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Abstract

Interactive image processing techniques, along with a linear-programming-based inductive
classifier, have been used to create a highly accurate system for diagnosis of breast tumors.
A small fraction of a fine needle aspirate slide is selected and digitized. With an interactive
interface, the user initializes active contour models, known as snakes, near the boundaries of a
set of cell nuclei. The customized snakes are deformed to the exact shape of the nuclei. This
allows for precise, automated analysis of nuclear size, shape and texture. Ten such features are
computed for each nucleus, and the mean value, largest (or “worst”) value and standard error of
each feature are found over the range of isolated cells.

After 569 images were analyzed in this fashion, different combinations of features were tested
to find those which best separate benign from malignant samples. Ten-fold cross-validation
accuracy of 97% was achieved using a single separating plane on three of the thirty features:
mean texture, worst area and worst smoothness. This represents an improvement over the best
diagnostic results in the medical literature. The system is currently in use at the University of
Wisconsin Hospitals. The same feature set has also been utilized in the much more difficult task
of predicting distant recurrence of malignancy in patients, resulting in an accuracy of 86%.
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National Science Foundation grant CCR-9101801.
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1 Introduction

The diagnosis of breast tumors has traditionally been performed by a full biopsy, an invasive surgical pro-
cedure. Fine needle aspirations (FNAs) provide a way to examine a small amount of tissue from the tumor;
however, diagnosis with this procedure has met with mixed success.d 0 By carefully examining both the
characteristics of individual cells and important contextual features such as the size of cell clumps, physi-
cians at some specialized institutions have been able to diagnose successfully using FNAs. However, many
different features are thought to be correlated with malignancy, and the process remains highly subjective,
depending upon the skill and experience of the physician. In order to increase the speed, correctness, and
objectivity of the diagnosis process, we have used image processing and machine learning techniques.

2 Cell Nucleus Location

2.1 Image Preparation

The diagnosis procedure begins by obtaining a small drop of fluid from a breast tumor using a fine needle. The
aspirated material is then expressed onto a glass slide and stained. The image for digital analysis is generated
by a JVC TK-1070U color video camera mounted atop an Olympus microscope and the image is projected
into the camera with a 63x objective and a 2.5x ocular. The image is captured by a ComputerEyes/RT
color frame grabber board (Digital Vision, Inc., Dedham MA 02026) as a 512x480, 8-bit-per-pixel Targa
file.

2.1.1 The User Interface

The first step in successfully analyzing the digital image is to specify an accurate location of each cell
nucleus boundary. A graphical user interface was developed that allows the user to input approximate initial
boundaries of enough nuclei to provide a representative sample. The interface was developed using the X
Window System and the Athena Widget Set on a DECstation 3100. A mouse button is used to trace a
rough outline of some visible cell nuclei. These outlines are shown in Figure 1.

2.2 Snakes

Beginning with a user-defined approximate boundary as an initialization, the actual boundary of the cell
nucleus is located by an active contour model known in the literature as a “snake” T A snake is a deformable
spline which seeks to minimize an energy function defined over the arclength of a closed curve. The energy
function is defined in such a way that the minimum value occurs when the curve accurately corresponds
to the boundary of a cell nucleus. To achieve this, the energy function to be minimized is defined as the
following function of arclength s:

E= /(aEcom(S) + BEcury (5) + 7Eimay€(5))ds

Here E represents the total energy integrated along the arclength s of the snake. The energy computation
is a weighted sum of energy terms Feont, Feurv and Ejmage With respective weights «, 8 and v. To simplify
the necessary processing, the energy function is computed at a number of discrete points along the curve,
and the sum of these values is minimized. The component energy terms measure the following quantities:

e Continuity Feont

This term is constructed to penalize discontinuities in the curve. In the discrete case, this term measures
how evenly spaced the snake points are. Note that this is a geometric property of the snake itself, and
does not depend on the nucleus boundary that is being determined. The distance from a snake point
to one of its neighbors is found and compared to the average distance between adjacent points. The
magnitude of this difference is then E ons.



Figure 1: Initial Approximate Boundaries of Cell Nuclei
The user first draws a rough initial outline of some cell nucleus boundaries. Each outline serves as the
initial position for a deformable spline which converges to an accurate boundary of the nucleus.

o Curvature Eoyry

This geometric term measures discontinuities in the curvature of the snake. Cell nuclei are more or less
ellipsoidal; hence, points with abnormally high or low curvature, compared to a circle, are penalized.
Taking advantage of this knowledge about the nuclear shape, the following method was adopted. First,
the ’center’ of the snake (center of mass of the snake points) is located. The distance from a snake
point to the center (i.e., length of radial line) is then compared to the average of such distances in a
neighborhood of the point. The magnitude of the difference is this energy term Ecupo.

Image Fimage

This is the only term that ties the snake’s performance to the underlying image. In our case Ejimage
measures the gray-level discontinuity along the snake. To quantify this discontinuity we convolve
the area of the image corresponding to the snake point with a Sobell edge detector and observe the
resulting edge magnitude. This term is customized by taking advantage of the fact that cell nuclei are
generally darker than the surrounding material. Hence, the edge detection template is rotated so that
the expected edge is perpendicular to the radial line of the nucleus at that point. For instance, for a
snake point directly above the center of the nucleus, the edge template
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would be applied. In this way, gray scale discontinuities which are perpendicular to the radial line
produce the highest edge score. Ejimage is defined so a sharp discontinuity minimizes the energy value.

The weights «, § and v are empirically derived constants. For best performance on these images, v is set,

somewhat higher than the others to ensure that the snake converges to any visible boundary. The curvature



term determines the snake’s shape in cases of low contrast or partial occlusion. The continuity term does
not determine shape, but does prevent snake points from bunching together near areas of sharpest gray scale
contrast.

In order to control computation time, the optimal local value of the energy function is approximated
using a greedy algorithm due to Williams and Shah.13 If the function value at a particular snake point can
be lowered by moving the point to an adjacent pixel, then it is moved, thus possibly affecting the energy
computation at other points. The process is repeated for each point until all points settle into a local
minimum of the energy function. The results of a typical image are shown in Figure 2.

Figure 2: Snakes After Convergence to Cell Nucleus Boundaries
These contours are the final representation of the cell nuclei boundaries after the user is satisfled with the
convergence of the snakes. This interactive process takes about two to five minutes.

3 Nuclear Features

The computer vision diagnostic system extracts ten different features from the snake-generated cell nuclei
boundaries. All of the features are numerically modeled such that larger values will typically indicate a
higher likelihood of malignancy. The extracted features are as follows.

1. Radius
The radius of an individual nucleus is measured by averaging the length of the radial line segments
defined by the centroid of the snake and the individual snake points.

2. Perimeter

'The total distance between the snake points constitutes the nuclear perimeter.

3. Area

Nuclear area is measured simply by counting the number of pixels on the interior of the snake and
adding one-half of the pixels in the perimeter.



4. Compactness

Perimeter and area are combined! to give a measure of the compactness of the cell nuclei using the
formula perimeter? Jarea. This dimensionless number is minimized by a circular disk and increases
with the irregularity of the boundary. However, this measure of shape also increases for elongated cell
nuclei, which do not necessarily indicate an increased likelihood of malignancy. The feature is also
biased upward for small cells because of the decreased accuracy imposed by digitization of the sample.
We compensate for the fact that no single shape measurement seems to capture the idea of “irregular”
by employing several different shape features.

5. Smoothness

The smoothness of a nuclear contour is quantified by measuring the difference between the length of
a radial line and the mean length of the lines surrounding it. This is similar to the curvature energy
computation in the snakes. See Figure 3.

Figure 3: Radial Lines Used for Smoothness Computation

6. Concavily

In a further attempt to capture shape information we measure the number and severity of concavities
or indentations in a cell nucleus. We draw chords between non-adjacent snake points and measure the
extent to which the actual boundary of the nucleus lies on the inside of each chord (see Tigure 4).
This parameter is greatly affected by the length of these chords, as smaller chords better capture small
concavities. We have chosen to emphasize small indentations, as larger shape irregularities are captured
by other features.

Figure 4: Chords Used to Compute Concavity

7. Concave Points

This feature is similar to Concavity but measures only the number, rather than the magnitude, of
contour concavities.

8. Symmelry



In order to measure symmetry, the major axis, or longest chord through the center, is found. We then
measure the length difference between lines perpendicular to the major axis to the cell boundary in
both directions. See Figure 5. Special care is taken to account for cases where the major axis cuts the
cell boundary because of a concavity.

Figure 5: Segments Used in Symmetry Computation

9. Fractal Dimension

The fractal dimension of a cell is approximated using the “coastline approximation” described by
Mandelbrot.? The perimeter of the nucleus is measured using increasingly larger 'rulers’. As the
ruler size increases, decreasing the precision of the measurement, the observed perimeter decreases.
See Figure 6. Plotting these to values on a log scale and measuring the downward slope gives (the
negative of) an approximation to the fractal dimension. As with all the shape features, a higher value
corresponds to a less regular contour and thus to a higher probability of malignancy.

OGO

Figure 6: Sequence of Measurements for Computing Fractal Dimension

10. Texlure

The texture of the cell nucleus is measured by finding the variance of the gray scale intensities in the
component pixels.

All of the shape features were verified using idealized phantom cells. They were shown to increase as the
boundaries became less regular, and to be largely uncorrelated with the size of the contour.

The mean value, extreme (largest) value and standard error of each feature are computed for each image.
The extreme values are the most intuitively useful for the problem at hand, since only a few malignant cells
may occur in a given sample.

4 Diagnostic Results

A set of 569 images has been processed in the manner described above, yielding a database of 30-dimensional
points. The problem then becomes one of pattern separation, that is, determining how these points can best
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Figure 7: Separating Plane in Three Dimensions
In order to clarify the plot, only 10% of the correctly classified benign and malignant points are shown
here. All of the misidentified points are shown.

be separated into benign and malignant sets. The classification procedure used is a variant on the Multi-
surface Method (MSM)lO’ 1 known as MSM-Tree (MSMJT).Q’3 This method uses a linear programming
model to iteratively place a series of separating planes in the feature space of the examples. If the two sets
of points are linearly separable, the first plane will be placed between them. If the sets are not linearly
separable, MSM-T will construct a plane which minimizes the average distance of misclassified points to
the plane, thus nearly minimizing the number of misclassified points. The procedure is recursively repeated
on the two newly created regions. Although the algorithm includes a pruning procedure to reduce the size
of the resulting decision tree, our results were obtained by manually restricting the number of separating
planes, and thus the number of decision regions.

In order to generate a classifier which generalizes well to unseen cases, we sought to minimize not only
the number of separating planes but also the number of features used. The resulting single-plane classifier
separates the points based on three feature values: mean texture and extreme values of area and smoothness.
The plane, shown in Figure 7, separates 97.3% of the cases successfully. In order to estimate the performance
on unseen cases, a ten-fold cross-validationl? was performed. This train-and-test procedure divides the
dataset into ten randomly selected, equally sized parts and uses each as a test set on a classifier created
from the others. It thus provides a prediction of how well the classifier would perform on the universe of
unseen cases. This estimate is unbiased and also very accurate in cases such as ours which have a fairly large
number of training samples. In the case of this classifier, the predicted correctness was 97.0%.

To aid the physician and give the most complete picture of the classifier’s effectiveness, we have imple-
mented a method of varying the position of this single separating plane. As with many medical tests, the
reliability of our diagnostic procedure is graded by the following numbers: Sensitivity = $9Lreet positive

total positive

Speci ficity = f9rrect negative g, moving the plane parallel to itself we can vary the specificity and sensitiv-

total negative
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Sensitivity = 18 /20 = .90
Specificity =18 /21 = .86

Increasing
Sensitivity

Increasing

Specificity O Positive (malignant)

X Negative (benign)

Figure 8: Adjusting Sensitivity and Specificity
A possible separating plane (here, simply a line) for a two-dimensional data, set, and the resulting sensitivity
and specificity of the classifier, is shown. By moving the line either direction parallel to itself (i.e., along
its normal vector) these numbers can be adjusted. For instance, the dotted line represents a separator with
100% specificity at the cost of lower sensitivity.

ity of the test. In practice, the plane is moved to include the point being examined, and the specificity and
sensitivity are computed for the resulting classifier. The process is shown in two dimensions in Figure 8.

The digital features have also been used to predict prognosis, that is, whether or not the cancer will recur
at some future time in patients. with malignant tumors. Selecting an endpoint of two years, 124 samples
were used. Table 1 shows the leave-one-out testing8 results and the features used in the classifier with the
best test set separation for various combinations of features and planes. Note that this more ambiguous data
required more planes (but still only a few features) to get satisfactory separation. Also, the best feature sets
seem to follow a distinct pattern: one size feature plus one shape feature, with additional features adding
only marginal correctness.

5 Conclusions and Future Work

We have described a system that uses image processing and machine learning techniques to diagnose breast
tumors by non-invasive fine needle aspiration. The system utilizes an interactive interface that allows fast,
accurate and objective diagnosis, even by untrained observers. The system is now in use at the University
of Wisconsin Hospitals and is one tool used by doctors there for diagnosis of breast cancer, the second most
deadly form of cancer in the U.S. since 1970.0

Future directions for this research will be driven both by the need to improve the existing diagnostic and
prognostic systems and the possibility of generalizing this approach to other forms of cancer as well as other
cellular diseases. There are three distinct paths along which this research will move: sample preparation,
image processing and pattern separation.

Most of the issues involved in the preparation of the sample lie in the medical realm, with one exception.
A certain selection bias is introduced in the process when the physician decides what part of the sample
will be digitized. While the bias is very difficult to quantify, it is possible that if the physician suspects the
sample to be malignant, then the selected cells will reflect that suspicion. This bias could be reduced by
selecting a number of different areas for digitization, or possibly eliminated altogether by automating the
selection process.

In the area of image processing, certainly our feature set is not comprehensive, and new features may he
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SE Area M Area M Smoothness
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Features M Radius M Texture M Texture
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SE Fractal Dim | W Fractal Dim | W Fractal Dim
76.6 86.3 81.4

Table 1: Features and Testing Correctness for Prognosis Data
All subsets of k features were tested for training set separation. The subset which demonstrated the best
separation was then tested using the leave-one-out approach, and the percent correctness is shown. (M =
mean, SE = standard error, W = worst)

better suited to the analysis of other diseases. However, the richest area for future work would seem to be the
snake model. While this kind of deformable contour model is a very powerful tool, it has the disadvantage of
requiring a fairly precise initialization in order to converge to the desired contour. One interesting possibility
would be to apply machine learning to the process in such a way that the model becomes tailored to
the particular type of object being detected. In our case, recall that the weights assigned to the various
components of the energy function were empirically derived. These could instead be learned, using both the
snake’s performance (speed to convergence and resulting energy) and a subjective user grade as feedback.
Further, domain-specific heuristics, such as the directional edge detectors and expected elliptical shape,
might also be learned.

Current work in pattern separation is concentrating on the problem of feature selection. The exhaustive
search through the space of possible feature subsets is clearly unacceptable for larger subsets. Various
heuristic search techniques, as well as machine learning approaches, are being considered for selecting both
the feature subset and the number of separating planes which are necessary. Different pattern separation
approaches are being considered that take greater advantage of the speed and flexibility of MSM-T.
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