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1 Introduction35

Antibody Affinity Maturation (AAM) takes place in Germinal Centers (GCs),36

specialized micro-environnements which form in the peripheral lymphoid or-37

gans upon infection or immunization [37,10]. GCs are seeded by ten to hun-38

dreds distinct B-cells [34], activated after the encounter with an antigen, which39

initially undergo a phase of intense proliferation [10]. Then, AAM is achieved40

thanks to multiple rounds of division, Somatic Hypermutation (SHM) of the B-41

cell receptor proteins, and subsequent selection of B-cells with improved ability42

of antigen-binding [20]. B-cells which successfully complete the GC reaction43

output as memory B-cells or plasma cells [38,10]. Indirect evidence suggests44

that only B-cells exceeding a certain threshold of antigen-affinity differentiate45

into plasma cells [30]. The efficiency of GCs is assured by the contribution of46

other immune molecules, for instance Follicular Dendritic Cells (FDCs) and47

follicular helper T-cells (Tfh). Nowadays the key dynamics of GCs are well48

characterized [20,10,13,34]. Despite this there are still mechanisms which re-49

main unclear, such as the dynamics of clonal competition of B-cells, hence50

how the selection acts. In recent years a number of mathematical models of51

the GC reaction has appeared to investigate these questions, such as [22,40],52

where agent-based models are developed and analyzed through extensive nu-53

merical simulations, or [45] where the authors establish a coarse-grained model,54

looking for optimal values of e.g. the selection strength and the initial B-cell55

fitness maximizing the affinity improvement.56

57

Our aim in this paper is to contribute to the mathematical foundations58

of adaptive immunity by introducing and studying a simplified evolutionary59

model inspired by AAM, including division, mutation, affinity-dependent selec-60

tion and death. We focus on interactions between these mechanisms, identify61

and analyze the parameters which mostly influence the system functionality,62

through a rigorous mathematical analysis. This research is motivated by im-63

portant biotechnological applications. Indeed, the fundamental understanding64

of the evolutionary mechanisms involved in AAM have been inspiring many65

methods for the synthetic production of specific antibodies for drugs, vac-66

cines or cancer immunotherapy [2,19,32]. This production process involves67
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the selection of high affinity peptides and requires smart methods to gene-68

rate an appropriate diversity [9]. Beyond biomedical motivations, the study69

of this learning process has also given rise in recent years to a new class of70

bio-inspired algorithms [7,27,35], mainly addressed to solve optimization and71

learning problems.72

73

We consider a model in which B-cells are classified into N + 1 affinity74

classes with respect to a presented antigen, N being an integer big enough to75

opportunely describe the possible fitness levels of a B-cell with respect to a76

specific antigen [41,43]. A B-cell is able to increase its fitness thanks to SHMs77

of its receptors: only about 20% of all mutations are estimated to be affinity-78

affecting mutations [31,33]. By conveniently defining a transition probability79

matrix, we can characterize the probability that a B-cell belonging to a given80

affinity class passes to another one by mutating its receptors thanks to SHMs.81

Therefore we define a selection mechanism which acts on B-cells differently de-82

pending on their fitness. We mainly focus on a model of positive and negative83

selection in which B-cells submitted to selection either die or exit the GC as84

output cells, according to the strength of their affinity with the antigen. Hence,85

in this case, no recycling mechanism is taken into account. Nevertheless the86

framework we set is very easy to manipulate: we can define and study other87

kinds of affinity-dependent selection mechanisms, and eventually include recy-88

cling mechanisms, which have been demonstrated to play an important role in89

AAM [39]. We demonstrate that independently from the transition probability90

matrix defining the mutational mechanism and the affinity threshold chosen91

for positive selection, the optimal selection rate maximizing the number of92

output cells for the tth generation is 1/t, t ∈ N (Proposition 6).93

94

From a mathematical point of view, we study a class of multi-types Galton-95

Watson (GW) processes (e.g. [14,3]) in which, by considering dead and se-96

lected B-cells as two distinct types, we are able to formalize the evolution of97

a population submitted to an affinity-dependent selection mechanism. To our98

knowledge, the problem of affinity-dependent selection in GW processes has99

not been deeply investigated so far.100

101

In Section 2 we define the main model analyzed in this paper. We give102

as well some definitions that we will use in next sections. Section 3 contains103

the main mathematical results. A convenient use of a multi-type GW process104

allows to study the evolution of both GC and output cells over time. We de-105

termine the optimal value of the selection rate which maximizes the expected106

number of selected B-cells at any given maturation cycle in Section 3.3. We107

conclude Section 3 with some numerical simulations. In Section 4 we define two108

possible variants of the model described in previous sections, and provide some109

mathematical results and numerical simulations as well. This evidences how110

the mathematical tools used in Section 3 easily apply to define other affinity-111

dependent selection models. Finally, in Section 5 we discuss our modeling112

assumptions and give possible extensions and limitations of our mathematical113
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model. In order to facilitate the reading of the paper, some technical mathe-114

matical demonstrations, as well as some classical results about Galton-Watson115

theory are reported in the Appendix for interested readers.116

117

2 Main definitions and modeling assumptions118

This section provides the mathematical framework of this article. Let us sup-119

pose that given an antigen target cell x, all B-cell traits can be divided in120

exactly N +1 distinct affinity classes, named 0 to N .121

Definition 1 Let x be the antigen target trait. Given a B-cell trait x, we122

denote by ax(x) the affinity class it belongs to with respect to x, ax(x) ∈123

{0, . . . ,N}. The maximal affinity corresponds to the first class, 0, and the124

minimal one to N .125

Definition 2 Let x be a B-cell trait belonging to the affinity class ax(x) with
respect to x. We say that its affinity with x is given by:

aff(x,x) =N −ax(x)

Of course, this is not the only possible choice of affinity. Typically affinity126

is represented as a Gaussian function [40,22], having as argument the distance127

between the B-cell trait and the antigen in the shape space of possible traits.128

In our model this distance corresponds to the index of the affinity class the129

B-cell belongs to (0 being the minimal distance, N the maximal one). Never-130

theless the choice of the affinity function does not affect our model.131

132

During the GC reaction B-cells are submitted to random mutations. This133

implies switches from one affinity class to another with a given probability.134

Setting these probability means defining a mutational rule on the state space135

{0, . . . ,N} of affinity classes indices (the formal mathematical definition will136

be given in Section 3.2).137

138

The main model we study in this paper is represented schematically in139

Figure 1. It is defined as follows:140

Definition 3 The process starts with z0 ≥ 1 B-cells entering the GC, belong-
ing to some affinity classes in {0, . . . ,N}. In case they are all identical, we
denote by a0 the affinity class they belong to, with respect to the antigen tar-
get cell x. At each time step, each GC B-cell can eventually undertake three
distinct processes: division, mutation and selection. First of all, each GC B-
cell can die with a given rate rd ∈ [0,1]. If not, each B-cell can divide with
rate rdiv ∈ [0,1]: each daughter cell may have a mutated trait, according to
the mutational rule allowed. Hence it eventually belongs to a different affinity
class than its mother cell. Clearly, it also happens that a B-cell stays in the
GC without dying nor dividing. Finally, with rate rs ∈ [0,1] each B-cell can
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be submitted to selection, which is made according to its affinity with x. A
threshold as is fixed: if the B-cell belongs to an affinity class with index greater
than as, the B-cell dies. Otherwise, the B-cell exits the GC pool and reaches
the selected pool. Therefore, for any GC B-cell and at any generation, we have:Probability of cellular apoptosis: P(death) = rd

Probability of cellular division: P(division) = rdiv

Probability of selection challenge: P(selection) = rs
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Figure 1: Schematic representation of model described by Definition 3. Here
we denote by affs :=N−as, the fitness of each B-cell in the affinity class whose
index is as (see Definitions 1 and 2).

Once the GC reaction is fully established (∼ day 7 after immunization), it141

is polarized into two compartments, named Dark Zone (DZ) and Light Zone142

(LZ) respectively. The DZ is characterized by densly packed dividing B-cells,143

while the LZ is less densely populated and contains FDCs and Tfh cells. The144

LZ is the preferential zone for selection [10]. The transition of B-cells from the145

DZ to the LZ seems to be determined by a timed cellular program: over a 6146

hours period about 50% of DZ B-cells transit to the LZ, where they compete147

for positive selection signaling [6,36].148

149

Through the entire paper one should keep in mind the following main150

modeling assumptions:151
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Modeling assumption 1 In our simplified mathematical model we do not take152

into account any spatial factor and in a single time step a GC B-cell can153

eventually undergo both division (with mutation) and selection. Hence the154

time unit has to be chosen big enough to take into account both mechanisms.155

Modeling assumption 2 In this paper we are considering discrete-time models.156

The symbol t always denote a discrete time step, hence it is an integral value.157

We will refer to t as time, generation, or even maturation cycle to further158

stress the fact that in a single time interval [t, t+1] each B-cell within the GC159

population is allowed to perform a complete cycle of division, mutation and160

selection.161

Modeling assumption 3 Throughout the entire paper, when we talk about162

death rate (respectively division rate or selection rate) we are referring to163

the probability that each cell has of dying (respectively dividing or being sub-164

mitted to selection) in a single time step.165

166

3 Results167

In this Section we formalize mathematically the model introduced above. This168

enables the estimation of various qualitative and quantitative measures of the169

GC evolution and of the selected pool as well. In Section 3.1 we show that a170

simple GW process describes the evolution of the size of the GC and determine171

a condition for its extinction. In order to do so, we do not need to know the172

mutational model. Nevertheless, if we want to understand deeply the whole173

reaction we need to consider a (N +3)-type GW process, which we introduce174

in Section 3.2. Therefore we determine explicitly other quantities, such as the175

average affinity in the GC and the selected pool, or the evolution of the size176

of the latter. We conclude this section by numerical simulations (Section 3.4).177

3.1 Evolution of the GC size178

The aim of this section is to estimate the evolution of the GC size and its179

extinction probability. In order to do so we define a simple GW process, with180

respect to parameters rd, rdiv and rs. Indeed, each B-cell submitted to selection181

exits the GC pool, independently from its affinity with x. Hence we apply some182

classical results about generating functions and GW processes ([14], Chapter183

I), which we recall in Appendix A. Proposition 1 gives explicitly the expected184

size of the GC at time t and conditions for the extinction of the GC.185

Definition 4 Let Z(z0)
t , t≥ 0 be the random variable (rv) describing the GC-186

population size at time t, starting from z0 ≥ 1 initial B-cells. (Z(z0)
t )t∈N is a187

Markov Chain (MC) - since each cell behaves independently from the others188

and from previous generations - on {0,1,2, . . .}.189
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If z0 = 1 and there is no confusion, we denote Zt := Z
(1)
t . By Definition190

4, Z1 corresponds to the number of cells in the GC at the first generation,191

starting from a single seed cell. Thanks to Definition 3 one can claim that192

Z1 ∈ {0,1,2}, with the following probabilities:193 p0 := P(Z1 = 0) = rd +(1− rd)rs(1− rdiv + rdivrs)
p1 := P(Z1 = 1) = (1− rd)(1− rs)(1− rdiv +2rdivrs)
p2 := P(Z1 = 2) = rdiv(1− rd)(1− rs)2

(1)

As far as next generations are concerned, conditioning to Zt = k, i.e. at194

generation t there are k B-cells in the GC, Zt+1 is distributed as the sum of195

k independent copies of Z1: P(Zt+1 = k′ |Zt = k) = P
(∑k

i=1Z1 = k′
)
.196

197

Equalities in (1) are derived by identifying the events leading to 0, 1 or198

2 offspring in the GC coming from a single clone. Since these events are in-199

dependent and disjoint, the result follows. For instance there will be 0 new200

individuals in the GC if either the mother cell dies, or it does not die, does201

not divide and is submitted to selection, or it does not die, it does divide and202

both daughter cells are submitted to selection :203

P(Z1 = 0) = P
(
death∪ (deathC ∩divisionC ∩ selection)∪ (deathC ∩division∩ selection∩ selection)

)
= P(death)+P(deathC)P(divisionC)P(selection)+P(deathC)P(division)P(selection)2

= rd +(1− rd)(1− rdiv)rs +(1− rd)rdivr
2
s

We have denoted by AC the complement of event A. Expressions for p1 and204

p2 are obtained proceeding as before.205

Definition 5 Let X be an integer valued rv, pk := P(X = k) for all k ≥ 0. Its
probability generating function (pgf) is given by:

FX(s) =
+∞∑
k=0

pks
k

The pgf for Z1:206

F (s) = p0 +p1s+p2s
2

= rd +(1− rd)rs(1− rdiv + rdivrs)
+ (1− rd)(1− rs)(1− rdiv +2rdivrs)s+ rdiv(1− rd)(1− rs)2s2 (2)

By using classical results on Galton-Watson processes (see Appendix A),207

one can prove:208

Proposition 1209

(i) The expected size of the GC at time t and starting from z0 initial B-cells210

is given by:211

E(Z(z0)
t ) = z0 ((1− rd)(1+ rdiv)(1− rs))t (3)
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(ii) Denoted by ηz0 the extinction probability of the GC population starting212

from z0 initial B-cells, one has:213

– if E(Z(1)
1 )≤ 1⇔ rs ≥ 1− 1

(1− rd)(1+ rdiv) , then ηz0 = 1: the process is214

subcritical215

– otherwise ηz0 = ηz0 < 1, η being the smallest fixed point of (2): the216

process is supercritical217

In particular, the initial number of seed cells z0 does not affect the crit-218

icality of the process. Nevertheless, in the supercritical case, increasing the219

number of seed B-cells at the beginning of the process makes the probabil-220

ity of extinction decrease. More precisely, in the case η < 1, then ηz0 → 0 if221

z0 →∞, but we recall that GCs seem to be typically seeded by few B-cells,222

varying from ten to hundreds [34].223

224

0.0 0.2 0.4 0.6 0.8 1.0

rs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

η

Figure 2: Numerical estimation of the extinction probability η of the GC
with respect to rs for rd = 0.1 and rdiv = 0.9.

This section shows that a classical use of a simple GW process enables225

to understand quantitatively the GC growth. Moreover, Proposition 1 (ii)226

gives a condition on the main parameters for the extinction of the GC: if227

the selection pressure is too high, with probability 1 the GC size goes to 0,228

independently from the initial number of seed cells. Intuitively, a too high229

selection pressure prevents those B-cells with bad affinity to improve their230

fitness undergoing further rounds of mutation and division. Most B-cells will231

be rapidly submitted to selection, hence either exit the GC as output cells or232

die by apoptosis if they fail to receive positive selection signals [20]. In Figure233

2 we plot the extinction probability of a GC initiated from a single seed cell234

as a function of rs (rd and rdiv are fixed), in order to stress the presence of235

a threshold effect of the selection probability over the extinction probability.236

The extinction probability of the GC process can give us some further insights237

on factors which are potentially involved in determining the success or failure238

of a GC reaction. This simplified mathematical model suggests that if the239
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selection pressure is too high compared to the division rate (c.f. due to Tfh240

signals in the LZ), the GC will collapse with probability 1, preventing the241

generation of high affinity antibodies against the presented antigen, hence an242

efficient immune response.243

3.2 Evolution of the size and fitness of GC and selected pools244

The GW process defined in the previous Section only describes the size of245

the GC. Indeed, we are not able to say anything about the average fitness of246

GC clones, or the expected number of selected B-cells, or their average affin-247

ity. Hence, we need to consider a more complex model and take into account248

the threshold for positive selection as, and the transition probability matrix249

characterizing the mutational rule. Indeed, the mutational process is described250

as a Random Walk (RW) on the state space {0, . . . ,N} of affinity classes in-251

dices. The mutational rule reflects the edge set associated to the state-space252

{0, . . . ,N}: this is given by a transition probability matrix.253

Definition 6 Let (Xt)t≥0 be a RW on the state-space of B-cell traits descri-
bing a pure mutational process of a B-cell during the GC reaction. We denote
by QN = (qij)0≤i,j≤N the transition probability matrix over {0, . . . ,N} which
gives the probability of passing from an affinity class to another during the
given mutational model. For all 0≤ i, j ≤N :

qij = P(ax(Xt+1) = j |ax(Xt) = i)

From a biological point of view, these probabilities could be obtained e.g. by254

identifying which key mutations are the most relevant in determining changes255

in the fitness of a clone to a specific antigen and at which frequency they are256

produced.257

258

We introduce a multi-type GW Process (see for instance [3], chapter V).259

Definition 7 Let Z(i)
t = (Z(i)

t,0, . . . ,Z
(i)
t,N+2), t ≥ 0 be a MC where for all 0 ≤260

j ≤ N , Z(i)
t,j describes the number of GC B-cells belonging to the jth-affinity261

class with respect to x, Z(i)
t,N+1 the number of selected B-cells and Z(i)

t,N+2 the262

number of dead B-cells at generation t, when the process is initiated in state263

i = (i0, . . . , iN ,0,0).264

Let mij := E[Z(i)
1,j ] the expected number of offspring of type j of a cell of265

type i in one generation. We collect all mij in a matrix,M= (mij)0≤i,j≤N+2.266

We have:267

E[Z(i)
t ] = iMt (4)

Supposing matrix QN given (Definition 6), describing the probability to268

switch from one affinity class to another thanks to a single mutation event,269

one can explicitly derive the elements ofM.270
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Proposition 2 M is a (N +3)× (N +3) matrix defined as a block matrix:

M=
(

M1 M2
02×(N+1) I2

)
Where:271

– 02×(N+1) is a 2× (N +1) matrix with all entries 0;272

– In is the identity matrix of size n;273

– M1 = 2(1− rd)rdiv(1− rs)QN +(1− rd)(1− rdiv)(1− rs)IN+1274

– M2 = (m2,ij) is a (N +1)×2 matrix where for all i ∈ {0, . . . ,N}:275

– if i≤ as:276

m2,i1 = (1− rd)(1− rdiv)rs +2(1− rd)rdivrs

as∑
j=0

qij ,277

m2,i2 = rd +2(1− rd)rdivrs

N∑
j=as+1

qij278

– if i > as:279

m2,i1 = 2(1− rd)rdivrs

as∑
j=0

qij ,280

m2,i2 = rd +(1− rd)(1− rdiv)rs +2(1− rd)rdivrs

N∑
j=as+1

qij281

The proof of Proposition 2 is available in Appendix B. It is based on the282

computation of the probability generating function of Z1.283

Remark 1 Independently from the given mutational model, the expected num-284

ber of selected or dead B-cells that each GC B-cell can produce in a single time285

step is given by α := rd + (1− rd)(1 + rdiv)rs. All rows of M2 sum to α in-286

dependently from the probability that each clone submitted to selection has287

of being positive selected, which we recall is 1 if it belongs to the ith affinity288

class, i≤ as, zero otherwise.289

Of course in the multi-type context we recover again results from Section290

3.1, such as the extinction probability of the GC (detailed in Appendix C).291

292

In order to determine the expected number of selected cells at a given time293

t, we need to introduce another multi-type GW process.294

Definition 8 Let Z̃(i)
t = (Z̃(i)

t,0, . . . , Z̃
(i)
t,N+2), t ≥ 0 be a MC where for all 0 ≤295

j ≤ N , Z̃(i)
t,j describes the number of GC B-cells belonging to the jth-affinity296

class with respect to x, Z̃(i)
t,N+1 the number of selected B-cells and Z̃(i)

t,N+2 the297

number of dead B-cells at generation t, when the process is initiated in state298

i = (i0, . . . , iN ,0,0) and before the selection mechanism is performed for the299

tth-generation.300
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Proceeding as we did for Z(i)
t , we can determine a matrix M̃ whose elements301

are m̃ij := E[Z̃(i)
1,j ] for all i, j ∈ {0, . . . ,N +2}.302

Proposition 3 M̃ is a (N +3)× (N +3) matrix, which only depends on ma-
trix QN , rd and rdiv and can be defined as a block matrix as follows:

M̃=
(

M̃1 M̃2
02×(N+1) I2

)
Where:303

– M̃1 = 2(1− rd)rdivQN +(1− rd)(1− rdiv)IN+1304

– M̃2 = (0N+1, rd ·1N+1), where 0N+1 (resp. 1N+1) is a (N + 1)-column305

vector whose elements are all 0 (resp. 1).306

One could prove that:307

E
[
Z̃(i)

t

]
= iMt−1M̃ (5)

Proposition 4 Let i be the initial state, |i| its 1-norm (|i| :=
∑N+2

j=0 ij).308

– The expected size of the GC at time t:309

N∑
k=0

(iMt)k

(
= |i|((1− rd)(1+ rdiv)(1− rs))t

)
(6)

– The average affinity in the GC at time t:310

N∑
k=0

(N −k)(iMt)k

N∑
k=0

(iMt)k

(7)

– Let St, t≥ 1 denotes the random variable describing the number of selected311

B-cells at time t. By hypothesis S0 = 0. (St)t∈N is a MC on {0,1,2, . . .}.312

The expected number of selected B-cells at time t, t≥ 1:313

E(St) = rs

as∑
k=0

(
iMt−1M̃

)
k

(8)

– The expected number of selected B-cells produced until time t:314

E

[
t∑

n=0
Sn

]
= E

[(
Z(i)

t

)
N+1

]
=
(
iMt

)
N+1 (9)
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– The average affinity of selected B-cells at time t, t≥ 1:315

as∑
k=0

(N −k)
(

iMt−1M̃
)

k

as∑
k=0

(
iMt−1M̃

)
k

(10)

– The average affinity of selected B-cells until time t:316

rs

t∑
n=1

as∑
k=0

(N −k)
(

iMn−1M̃
)

k

(iMt)N+1
(11)

Proof Equations (6) and (9) are a direct application of what stated in Equa-317

tion (17). Indeed, Equation (17) states that iMt contains the expectation of318

the number of all types cells at generation t when the process is started in319

i. Hence the expectation of the size of the GC at the tth generation is given320

by
∑N

k=0(iMt)k, since the GC at generation t contains all alive non-selected321

B-cells, irrespectively from their affinity. Similarly, the expected number of se-322

lected B-cells untill time t (9) corresponds to the expectation of the (N+1)th-323

type cell,
(
iMt

)
N+1.324

325

The proof of Equation (8) is based on Equation (5), which allows to esti-
mate the number of GC B-cells at generation t which are susceptible of being
challenged by selection. One can remark that the expected number of selected
B-cells at time t is obtained from the expected number of B-cells in GC at time
t (before the selection mechanism is performed) having fitness good enough to
be positive selected. This is given by

∑as
k=0

(
iMt−1M̃

)
k
, thanks to (5). The

result follows by multiplying this expectation by the probability that each of
these B-cells is submitted to mutation, i.e. rs. Finally, results about the av-
erage affinity in both the GC and the selected pool (Equations (7), (10) and
(11)) are obtained from the previous ones (c.f. (6), (8) and (9)) by multiplying
the number of individuals belonging to the same class by their fitness (Defi-
nition 2), and dividing by the total number of individuals in the considered
pool. The definition of affinity as a function of the affinity classes, determines
Equations (7), (10) and (11). Indeed, the affinity of the kth-affinity class is
given by N −k. ut

Remark 2 The expected size of the GC at time t can be obtained applying a326

simple GW process (Section 3.1) and is given by (3). It is possible to prove327

the equality in brackets in Equation (6) starting from the (N + 3)-type GW328

process. The interested reader can address to Appendix D for the detailed329

proof.330
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3.3 Optimal value of rs maximizing the expected number of selected B-cells331

at time t332

What is the behavior of the expected number of selected B-cells as a function333

of the model parameters? In particular, is there an optimal value of the selec-334

tion rate which maximizes this number? In this section we show that, indeed,335

the answer is positive.336

337

To do so we detail hereafter the computation of E(St) (Equation (8)), given338

by Proposition 4.339

340

Let us suppose, for the sake of simplicity, that QN is diagonalizable:341

QN =RΛNL , (12)

where ΛN = diag(λ0, . . . ,λN ), and R = (rij) (resp. L= (lij)) is the transition342

matrix whose rows (resp. lines) contain the right (resp. left) eigenvectors of343

QN , corresponding to λ0, . . . ,λN .344

345

Proposition 5 Let us suppose that at t= 0 there is a single B-cell entering the
GC belonging to the ith-affinity class with respect to the target cell. Moreover,
let us suppose that QN =RΛNL. For all t∈N, the expected number of selected
B-cells at time t, is:

E(St) = rs(1− rs)t−1(1− rd)t
N∑

`=0
(2λ`rdiv +1− rdiv)t

as∑
k=0

ri`l`k ,

The proof of Proposition 5 is detailed in Appendix E.346

347

As an immediate consequence of Proposition 5, we can claim:348

Proposition 6 For all t∗ ∈ N fixed, the value r∗s := rs(t∗) which maximizes
the expected number of selected B-cells at the t∗th maturation cycle is:

r∗s = 1
t∗

Proof Since (1− rd)t
∑N

`=0(2λ`rdiv + 1− rdiv)t
∑as

k=0 ri`l`k is a non negative
quantity independent from rs, the value of rs which maximizes E(St∗) is the
one that maximizes rs(1− rs)t∗−1. The result trivially follows. ut

This result suggests that the selection rate in GCs is tightly related to349

the timing of the peak of a GC response, i.e. the timing corresponding to the350

maximal production of output cells (this timing can be determined e.g. by ob-351

serving the concentration in blood of produced specific B-cells after infection352

or vaccination). In particular, following this model, GCs which peak early (e.g.353

for whom the maximal output cell production is reached in a few days) are354
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possibly characterized by a higher selection pressure than GCs peaking later.355

The peak of a typical GC reaction, measured as the average GC volume, has356

been estimated to be close to day 12 post immunization or a few days before357

[42], which is consistent with the observation of plasma cell response peak358

after immunization, e.g. [24]. Moreover, an high selection rate could also pre-359

vent a correct and efficient establishment of an immune response (c.f. results360

about extinction probability - Proposition 1). In addition, from a biological361

viewpoint, a too demanding selection pressure could avoid the generation of362

advantageous mutations, hence their fixation.363

364

Remark 3 Under certain hypotheses about the mutational model and the GC365

evolution, one could justify the claim of Proposition 6 by heuristic arguments,366

without considering the (N+3)-type GW process. This leads to approximately367

estimate the expected number of selected B-cells at time t (Appendix F).368

Figure 4 (a) shows the peak of positive selected B-cells at generation t for a369

certain set of parameters.370

3.4 Numerical simulations371

We evaluate numerically results of Proposition 4. The (N + 3)-type GW pro-372

cess allows a deeper understanding of the dynamics of both populations: inside373

the GC and in the selected pool. Through numerical simulations we empha-374

size the dependence of the quantities defined in Proposition 4 on parameters375

involved in the model.376

377

In previous works [5,4] we have modeled B-cells and antigens as N -length378

binary strings, hence their traits correspond to elements of {0,1}N . In this379

context we have characterized affinity using the Hamming distance between380

B-cell and antigen representing strings. The idea of using a N -dimensional381

shape space to represent antibodies traits and their affinity with respect to a382

specific antigen has already been employed (e.g. [28,22,17]), and N typically383

varies from 2 to 4. In the interests of simplification, we chose to set N = 2.384

Moreover, from a biological viewpoint, this choice means that we classify the385

amino-acids composing B-cell receptors strings into 2 classes, which could rep-386

resent amino-acids negatively and positively charged respectively. Charged and387

polar amino-acids are the most responsible in creating bonds which determine388

the antigen-antibody interaction [26].389

390

While performing numerical simulations (Sections 3.4 and 4.2) we refer to391

the following transition probability matrix on {0, . . . ,N}:392

Definition 9 For all i, j ∈ {0, . . . ,N}:

qij = P(ax(Xt+1) = j |ax(Xt) = i) =

 i/N if j = i−1
(N − i)/N if j = i+1
0 if |j− i| 6= 1
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QN := (qij)0≤i,j≤N is a tridiagonal matrix where the main diagonal consists393

of zeros.394

If we model B-cell traits as vertices of the state-space {0,1}N , this cor-395

responds to a model of simple point mutations (see [5] for more details and396

variants of this basic mutational model on binary strings).397

Example 1 One can give explicitly the form of matrix M2 (Proposition 2)398

corresponding to the mutational model defined in Definition 9:399

M2 =

0
...

as−1
as

as +1
as +2

...
N



α rd
...

...
α rd

α−β+β as
N rd +βN−as

N

β as+1
N rd +α−β+βN−(as+1)

N
0 rd +α
...

...
0 rd +α


,

where:400

– α := (1− rd)(1+ rdiv)rs401

– β := 2(1− rd)rdivrs402

403

Indeed, due to the particular form of matrix QN one has straightforward:404

–
as∑

j=0
qij =


1 if i < as

as/N if i= as

(as +1)/N if i= as +1
0 if i > as +1

405

–
N∑

j=as+1
qij =


0 if i < as

(N −as)/N if i= as

(N − (as +1))/N if i= as +1
1 if i > as +1

406

Remark 4 Note that all mathematical results obtained in previous sections are407

independent from the mutation model defined in Definition 9.408

We suppose that at the beginning of the process there is a single B-cell409

entering the GC belonging to the affinity class a0. Of course, the model we set410

allows to simulate any possible initial condition. Indeed, by fixing the initial411

vector i, we can decide to start the reaction with more B-cells, in different412

affinity classes. When it is not stated otherwise, the employed parameter set413

for simulations is given in Table 1.414

415
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Table 1: Parameter choice for simulations in Sections 3.4 (unless stated other-
wise).

N rs rd rdiv a0 as

10 0.1 0.1 0.9 3 3

We perform numerical simulations to better appreciate how the dynamics416

of the GC and positive selected clones populations are related and evolve417

depending on model parameters. In the case of a subcritical GC, by model418

definition selected clones stabilize at a given level once the GC becomes ex-419

tinct. Hence we conveniently chose a parameter set (Table 1) which implies420

a supercritical GC (Proposition 1): with great probability the simulated GC421

goes through explosion, and so the selected population does.422

3.4.1 Evolution of the GC population423

The evolution of the size of the GC can be studied by using the simple GW424

process defined in Section 3.1. Equation (3), in the case of a single initial B-cell,425

evidences that the expected number of B-cells within the GC for this model426

only depends on rd, rdiv and rs and it is not driven by the initial affinity, nor427

by the threshold chosen for positive selection as, nor by the mutational rule.428

429

Equation (3) evidences that, independently from the transition probabili-430

ty matrix defining the mutational mechanism, the GC size at time t increases431

with rdiv and decreases for increasing rs and rd. Moreover, the impact of these432

last two parameters is the same for the growth of the GC. One could expect433

this behavior since the effect of both the death and the selection on a B-cell434

is the exit from the GC.435

436

In order to study the evolution of the average affinity within the GC, we437

need to refer to the (N +3)-type GW process defined in Section 3.2.438

Proposition 7 Let us suppose that QN =RΛNL. The average affinity within
the GC at time t, starting from a single B-cell belonging to the ith-affinity class
with respect to x is given by:

N −

N∑
`=0

(2λ`rdiv +1− rdiv)t
N∑

k=0
k · ri`l`k

(1+ rdiv)t
,

Proof It follows directly from Equations (7) and by considering the eigende-
composition of matrix Q. One has to consider the expression of the tth power
of matrix M (which can be obtained recursively, see Appendix E): one can
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Figure 3: (a) Dependence of the expected average affinity in the GC on as

at time t = 15, for different values of a0. The average affinity in the GC is
constant with respect to as. (b) The evolution during time of the expected
average affinity in the GC for different values of a0. The average affinity con-
verges through N/2, due to the stationary distribution of QN , the binomial
probability distribution.

prove that the first N + 1 components of the ith-row of matrix Mt are the
elements of the ith-row of matrix RDtL, where D = 2(1−rd)rdiv(1−rs)ΛN +
(1− rd)(1− rdiv)(1− rs)IN+1 is a diagonal matrix. ut

It is obvious from Proposition 7 that this quantity only depends on the439

initial affinity with the target trait, the transition probability matrix QN and440

the division rate rdiv. The average affinity within the GC does not depend on441

as (as one can clearly see in Figure 3 (a)), nor by rs or rd. One can intuitively442

understand this behavior: independently from their fitness, all B-cells submit-443

ted to mutation exit the GC. Moreover, rs and rd impact the GC size, but444

not its average affinity, as selection and death affect all individuals of the GC445

independently from their fitness.446

447

It can be interesting to observe the evolution of the expected average affini-448

ty within the GC during time. Numerical simulations of our model show that449

the expected average affinity in the GC converges through N/2, independently450

from the affinity of the first naive B-cell (Figure 3 (b)). This depends on the451

mutational model we choose for these simulations. Indeed, providing that the452

GC is in a situation of explosion, for t big enough the distribution of GC clones453

within the affinity classes is governed by the stationary distribution of matrix454

QN [4]. Since for QN given by Definition 9 one can prove that the stationary455

distribution over {0, . . . ,N} is the binomial probability distribution [5], the456

average affinity within the GC will quickly stabilizes at a value of N/2. Note457

that for these simulations we chose N = 10, hence affinities are in the range458

[0,10].459
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3.4.2 Evolution of the selected pool460

The evolution of the number of selected B-cells during time necessarily de-461

pends on the evolution of the GC. In particular, let us suppose we are in the462

supercritical case, i.e. the extinction probability of the GC is strictly smaller463

than 1. Than, with positive probability, the GC explodes and so does the se-464

lected pool. On the other hand, if the GC extinguishes, the number of selected465

B-cells will stabilize at a constant value, as once a B-cell is selected it can only466
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Figure 4: (a-b) Expected number of selected B-cells for the time step t= 15
for different values of a0, depending on rs and as respectively. There exists
an optimal value of rs maximizing the expected number of selected B-cells
for a given generation. This value is independent from a0 and is equal to 1/t
as demonstrated in Proposition 6: the red vertical line in (a) corresponds to
this value. (c) Comparison between the expected number of selected B-cells
until time t given by evaluation of the theoretical formula (Equation (9)), and
the empirical value obtained as the mean over 4000 simulations. Vertical bars
denotes the corresponding estimated standard deviations. Here N = 7 and
rs = 0.3.
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stay unchanged in the selected pool.467

468

As demonstrated in Section 3.3, there exists an optimal value of the pa-469

rameter rs which maximizes the expected number of selected B-cells at time470

t. Figure 4 (a) evidences this fact. Moreover, as expected, simulations show471

that the expected size of selected B-cells at a given time t increases with the472

threshold as chosen for positive selection (Figure 4 (b)). This is a consequence473

of Proposition 5: as determines the number of elements of the sum
∑as

k=0 ri`l`k.474

475

Figure 4 (c) underlines the correspondence between theoretical results476

given by Proposition 4 and numerical values obtained by simulating the evo-477

lutionary process described by Definition 3. In particular Figure 4 (c) shows478

the expected (resp. average) number of selected B-cells produced until time479

t= 15 depending on the threshold chosen for positive selection, as.480

Remark 5 We recall that values expressed on y-axes of all graphs in Figure 4481

(and later in Figures 8 to 10) describe the expected number of some groups482

of B-cells (e.g. GC B-cells, output B-cells) generated at a given time step or483

after a given number of maturation cycles. Henceforth this is an adimensional484

number. It is of course envisageable to translate these values into concentra-485

tions of some specific B-cell phenotypes into e.g. blood or tissue samples in486

order to interpret theoretical results and compare them to biological data.487

4 Extensions of the model488

Proceeding as in Section 3.2, we can define and study many different models489

of affinity-dependent selection. Here we propose a model in which we perform490

only positive selection and a model reflecting a Darwinian evolutionary system,491

in which the selection is only negative. For the latter, we will take into account492

only N + 2 types instead of N + 3: we do not have to consider a selected493

pool. Indeed the selected population remains in the GC. Here below we give494

the definitions of both models. In Section 4.1 we formalize these problems495

mathematically, then in Section 4.2 we show some numerical results.496

4.1 Definitions and results497

Let us consider the process described in Definition 3. We change only the498

selection mechanism.499

Definition 10 (Positive selection) If a B-cell submitted to selection be-500

longs to an affinity class with index greater than as, nothing happens. Other-501

wise, the B-cell exits the GC pool and reaches the selected pool.502

Definition 11 (Negative selection) If a B-cell submitted to selection be-503

longs to an affinity class with index greater than as, it dies. Otherwise, nothing504

happens.505
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Figure 5: Schematic representations of models described (a) by Definitions
10 and (b) by Definitions 11 of exclusively positive (resp. exclusively negative)
selection.

In Figure 5 we represent schematically both processes of positive selection506

and of negative selection. It is clear from Figure 5 (b) that in the case of507

Definition 11 we do not need to consider the selected pool anymore.508
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Positive selection509

Definition 12 Let Z+
t

(i) = (Z+
t,0

(i)
, . . . ,Z+

t,N+2
(i)), t ≥ 0 be a MC where for510

all 0 ≤ j ≤ N , Z+
t,j

(i) describes the number of GC B-cells belonging to the511

jth-affinity class with respect to x, Z+
t,N+1

(i) the number of selected B-cells512

and Z+
t,N+2

(i) the number of dead B-cells at generation t, when the process513

is initiated in state i = (i0, . . . , iN ,0,0), and following the evolutionary model514

described by Definition 10.515

Let us denote by M+ = (m+
ij)0≤i,j≤N+2 the matrix containing the ex-516

pected number of type-j offspring of a type-i cell corresponding to the model517

defined by Definition 10. We can explicitly write the value of allm+
ij depending518

on rd, rdiv, rs, and the elements of matrix QN .519

Proposition 8 M+ is a (N + 3)2 matrix, which we can define as a block
matrix in the following way:

M+ =
(

M+
1 M+

2
02×(N+1) I2

)
Where:520

– M+
1 = (m+

1,ij) is a (N +1)2 matrix. For all i ∈ {0, . . . ,N}:521

– ∀j ≤ as: m+
1,ij = 2(1− rd)rdiv(1− rs)qij +(1− rd)(1− rdiv)(1− rs)δij522

– ∀j > as: m+
1,ij = 2(1− rd)rdivqij +(1− rd)(1− rdiv)δij523

where δij is the Kronecker delta.524

– M+
2 = (m+

2,ij) is a (N+1)×2 matrix where for all i ∈ {0, . . . ,N}, m+
2,i1 =525

m2,i1, and m+
2,i2 = rd. We recall that m2,i1 is the ith-component of the first526

column of matrixM2, given in Proposition 2.527

Negative selection528

Definition 13 Let Z−t
(i) = (Z−t,0

(i)
, . . . ,Z−t,N+1

(i)), t ≥ 0 be a MC where for529

all 0 ≤ j ≤ N , Z−t,j

(i) describes the number of GC B-cells belonging to the530

jth-affinity class with respect to x and Z−t,N+1
(i) the number of dead B-cells531

at generation t, when the process is initiated in state i = (i0, . . . , iN ,0), and532

following the evolutionary model described by Definition 11.533

Let us denote by M− = (m−ij)0≤i,j≤N+1 the matrix containing the ex-534

pected number of type-j offspring of a type-i cell corresponding to the model535

defined by Definition 13.536

Proposition 9 M− is a (N + 2)2 matrix, which we can define as a block
matrix in the following way:

M− =
(
M−1 m−2
0′N+1 1

)
Where:537
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– M−1 = (m−1,ij) is a (N +1)2 matrix. For all i ∈ {0, . . . ,N}:538

– ∀j ≤ as: m−1,ij = 2(1− rd)rdivqij +(1− rd)(1− rdiv)δij539

– ∀j > as: m−1,ij = 2(1− rd)rdiv(1− rs)qij +(1− rd)(1− rdiv)(1− rs)δij540

– m−2 is a (N + 1) column vector s.t. for all i ∈ {0, . . . ,N} m+
i = m2,i2,541

m2,i2 being the ith-component of the second column of matrix M2, given542

in Proposition 2.543

– 0′N+1 is a (N +1) row vector composing of zeros.544

We do not prove Propositions 8 and 9, since the proofs are the same as for545

Proposition 2 (Appendix B).546

547

Results stated in Proposition 4 hold true for these new models, by simply548

replacing matrixM withM+ (resp.M−). Of course, in the case of negative549

selection, as we do not consider the selected pool, we only refer to (6) and (7)550

quatifying the growth and average affinity of the GC. Matrix M̃ is the same551

for both models as only selection principles change.552

553

Because of peculiar structures of matricesM+ andM−, we are not able554

to compute explicitly their spectra. Henceforth we can not give an explicit555

formula for the extinction probability or evaluate the optimal values of the556

selection rate rs as we did in Sections 3.2 and 3.3.557

558

Nevertheless, by using standard arguments for positive matrices, the grea-559

test eigenvalue of both matrices M+
1 and M−1 can be bounded, and hence560

give sufficient conditions for extinction. Indeed, form classical results about561

multi-type GW processes, the value of the greatest eigenvalue allows to dis-562

criminate between subcritical case (i.e. extinction probability equal to 1) and563

supercritical case (i.e. extinction probability strictly smaller than 1) [3].564

Proposition 10 Let q+ (resp. q−) be the extinction probability of the GC565

for the model corresponding to matrixM+
1 (resp.M−1 ).566

– If rdiv ≤
rd

1− rd
, then q+ = q− = 1.567

568

– If rs < 1− 1
(1− rd)(1+ rdiv) , then q+ < 1 and q− < 1.569

Proof Since both matrices M+
1 and M−1 are strictly positive matrices, the570

Perron Frobenius Theorem insures that the spectral radius is also the greatest571

eigenvalue. Then the following classical result holds [23]:572

Theorem 1 Let A= (aij) be a square nonnegative matrix with spectral radius
ρ(A) and let ri(A) denote the sum of the elements along the ith-row of A. Then:

min
i
ri(A)≤ ρ(A)≤max

i
ri(A)
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Simple calculations provide:

min
i
ri(M+

1 ) = (1− rd)(1+ rdiv)− rs(1− rd)

2rdiv min
i

as∑
j=0

qij +1− rdiv


max

i
ri(M+

1 ) = (1− rd)(1+ rdiv)−2rsrdiv(1− rd)max
i

as∑
j=0

qij

min
i
ri(M−1 ) = (1− rd)(1+ rdiv)− rs(1− rd)

2rdiv min
i

N∑
j=as+1

qij +1− rdiv


max

i
ri(M−1 ) = (1− rd)(1+ rdiv)−2rsrdiv(1− rd)max

i

N∑
j=as+1

qij

The result follows by observing that for all i ∈ {0, . . . ,N}, 0 ≤
∑as

j=0 qij ,∑N
j=as+1 qij ≤ 1, and applying Theorem 3. ut
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Figure 6: Dependence of greatest eigenvalues of matricesM+ (blue circles)
andM− (green squares) respectively on as forN = 10, rdiv = 0.9, rd = rs = 0.1.
Hence (1− rd)(1+ rdiv)(1− rs) = 1.539 and (1− rd)(1+ rdiv) = 1.71.

Remark 6 One can intuitively obtain the second claim of Proposition 10, as573

this condition over the parameters implies that the probability of extinction574

of the GC for the model underlined by matrix M1 of positive and negative575

selection is strictly smaller than 1 (Proposition 1). Indeed keeping the same576

parameters for all models, the size of the GC for the model of positive and ne-577

gative selection is smaller than the size of GCs corresponding to both models578

of only positive and only negative selection. Consequently if the GC corre-579

sponding to M has a positive probability of explosion, it will be necessarily580

the same forM+ andM−.581
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Remark 7 The values of both ρ(M+
1 ) and ρ(M−1 ) depend on as, varying from582

a minimum of (1− rd)(1 + rdiv)(1− rs) and a maximum of (1− rd)(1 + rdiv).583

Figure 6 evidences the dependence on as of the spectral radius of M+
1 and584

M−1 , using matrix QN given by Definition 9 as transition probability matrix.585

Remark 7 and Figure 6 evidences that, conversely to the previous case586

of positive and negative selection, in both cases of exclusively positive (resp.587

exclusively negative) selection the parameter as plays an important role in588

the GC dynamics, affecting its extinction probability. In particular, keeping589

unchanged all other parameters, if as→N (resp. as→ 0), then ρ(M+
1 ) (resp.590

ρ(M−1 )) → (1− rd)(1+ rdiv)(1− rs), which implies q+ (resp. q−) → 1. From591

a biological viewpoint we expect that the GC dynamics should be influenced592

by the threshold required for selection. B-cell affinity determines the ability593

of a B-cell to internalize antigen, and present it to Tfh cells to receive appro-594

priate rescue signals. Experimental evidence indicates that B-cell affinity is595

extremely important to determine differential decision in GCs, i.e. if a B-cell596

submitted to selection is committed to become either a plasma cell or a mem-597

ory B-cell, recycle back to the dark zone to perform further rounds of somatic598

hypermutations, or die [16].599

600
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Figure 7: Dependence of greatest eigenvalues of matrices M+ (blue) and
M− (green) respectively on rs for N = 10, rdiv = 0.9, rd = 0.1, as = 3.

In Figure 7 we plot the dependence of greatest eigenvalues of both matrices601

M+ andM− with respect to rs. We fix rd = 0.1 and rdiv = 0.9 as for Figure602

2. One can note that with this parameter set and if the threshold for positive603

selection as is chosen not “too small” nor “too large” with respect to N , then604

the greatest eigenvalue for both matrices is always greater than 1 indepen-605

dently from rs, i.e. the extinction probability is always strictly smaller than606

1. From a biological viewpoint we expect that a phisiological threshold for607

positive selection should not be too strict nor to weak. Indeed, a too demand-608

ing threshold for positive selection is not optimal since B-cells should have609
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gained an extremely high affinity in order to be positive selected, which would610

at least require too much time, avoiding a prompt immune response against611

the invading pathogen. On the other hand, a too weak threshold results in an612

unchallenging affinity maturation process: almost any B-cell would be positive613

selected, irrespective from its affinity level with respect to the presented anti-614

gen. This could also entail the generation of auto-reactive clones.615

616

4.2 Numerical simulations617

The evolution of GCs corresponding to matrices M+ and M− respectively618

are complementary. Moreover, in both cases, keeping all parameters fixed one619

expects a faster expansion if compared to the model of positive and negative620

selection, since the selection acts only positively (resp. negatively) on good621

(resp. bad) clones. In particular, the model of negative selection corresponds622

to the case of 100% of recycling, meaning that all positively selected B-cells623

stay in the GC for further rounds of mutation, division and selection.624

625

Figure 8 shows the dependence on as of the GC size and fitness, comparing626

M+ (left column) andM− (right column). Indeed, for these models the GC627

dynamics depends on the selection threshold, conversely to the previous case628

of positive and negative selection, and not only on the selection rate. The ef-629

fects of as on the GC are perfectly symmetric: it is interesting to observe that630

when both selection mechanisms are coupled, then as does not affect the GC631

dynamics anymore, as shown for instance in Figure 3 (a). Moreover, Figures 8632

(c,d) evidence the existence of a value of as that minimizes (resp. maximizes)633

the expected average affinity in the GC forM+ (resp.M−). In both cases this634

value is approximately N/2. This certainly depends on the transition proba-635

bility matrix chosen for the mutational model, which converges to a binomial636

probability distribution over {0, . . . ,N}.637

638

The evolution of the selected pool for the model of positive selection have639

some important differences if compared to the model described in Section 3.640

For instance, it is not easy to identify an optimal value of rs which maximizes641

the expected number of selected B-cells at time t. Indeed it depends both on642

a0 and as: if a0 ≤ as we find curves similar to those plotted in Figure 4 (a), o-643

therwise Figure 9 (a) shows a substantial different behavior. Indeed, if a0 >as,644

choosing a big value for rs does not negatively affect the number of selected645

B-cells at time t. In this case, for the first time steps no (or a very few) B-cells646

will be positively selected, since they still need to improve their affinity to the647

target. Therefore, they stay in the GC and continue to proliferate for next648

generations. This fact is further underlined in Figure 9 (b), where we estimate649

numerically the optimal r∗s which maximizes the expected number of selected650

B-cells at time t. Simulations show that for a0 ≤ as the value of r∗s for the651

model of positive selection is really close to the one obtained by Proposition652
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Figure 8: (a,b) Dependence of the expected size of the GC after 15 time
steps on as for different values of a0. The thick black line corresponds in
both figures to the value of the greatest eigenvalue of matricesM+

1 andM−1
respectively, raised to the power of t = 15 (see Figure 6). Note that thanks
to Proposition 1 we know that for this parameter choice the expected size
of the GC for the model of positive and negative selection corresponds to
((1−rd)(1+rdiv)(1−rs))15, which is equivalently λ15

max for as = 10 in Figure
8 (a) or λ15

max for as = 0 in Figure 8 (b). (c,d) Dependence of the expected
average affinity in the GC after t= 15 time steps on as for different values of
a0. The left column of Figure 8 refers to the model of positive selection, while
the right column to the model of negative selection.

6. On the other hand if we start from an initial affinity class a0 > as the result653

we obtain is substantially different from the previous one, especially for small654

t. Moreover we observe important oscillations, which are probably due to the655

mutational model, and to the fact that the total GC size is still small for small656

t, since the process starts from a single B-cell. Nevertheless, it seems that for657

t big enough also in this case the value of r∗s tends to approach 1/t.658

659
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Figure 9: Model of positive selection. (a) Expected number of selected B-cells
for the time step t = 15 for different values of a0, depending on rs. (b) Esti-
mation of the optimal r∗s maximizing the expected number of selected B-cells
for a given generation, comparing the model of positive selection for different
values of a0 and the model described in Section 3 (we plot the exact value,
rs(t) = 1/t, as obtained by Proposition 6). In (b), for simulations correspond-
ing to the model of positive selection we set as = 5.

Since in the case of negative selection there is no selected pool, one can660

suppose that at a given time t the process stops and all clones in the GC pool661

exit the GC as selected clones. Hence it can be interesting to compare the662

selected pool of the model of positive selection and the GC pool of the model663

of negative selection at time t. Clearly to make these two compartments com-664

parable, the main parameters of both systems have to be opportunely chosen.665

In Figure 10 we compare the size and average fitness of the selected pool for666

M+ and the GC for M− at time t = 30. We test different values of the pa-667

rameter rs. In particular, we observe that increasing rs the GC size for the668

model of negative selection decreases and its average fitness increases. For the669

parameter choices we made for these simulations, Figure 10 (a) shows that the670

size of the GC forM− is comparable to the size of the selected pool forM+
671

at time t = 30 if, keeping all other parameters fixed, rs ∈ [0.12,0.15]. Never-672

theless, this does not implies a comparable value for the average affinity: the673

clones of the selected pool forM+ have a significantly greater average affinity674

than those of the GC forM−. In order to increase the average fitness in the675

GC for the model of negative selection one has to consider greater values for676

the parameter rs, but this affects the probability of extinction of the process.677

678

We can expect this discrepancy between the average affinity for the selected679

pool forM+ and the one of the GC forM−. Indeed, in the first case we are680

looking to all those B-cells which have been positive selected, hence belong at681

most to the ath
s -affinity class. On the contrary in the case ofM−, we consider682

the average affinity of all B-cells which are still alive in the GC at a given time683
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(a) (b)

Figure 10: Comparison between the pool of selected B-cells for M+ (blue)
and the GC population forM− (red) at t= 30 for different values of rs: (cir-
cles) rs = 0.1, (squares) rs = 0.12, (triangles) rs = 0.15. (a) Expected number
of B-cells which have been selected until time t = 30 for M+ compared to
the expected size of the GC for M− at t = 30. (b) Expected corresponding
average affinity for the selected pool (case of positive selection) and the GC
(case of negative selection). For some choice of the parameter rs, the size of
the selected pool forM+, and the GC forM−, are comparable. Nevertheless,
the corresponding average affinities are significantly different.

step. Among these clones, if rs < 1, with positive probability there are also684

individuals with affinity smaller than the one required for escaping negative685

selection. They remain in the GC because they have not been submitted to686

selection. These B-cells make the average affinity decrease. Of course rs is not687

the only parameter affecting the quantities plotted in Figure 10. In particular,688

one can observe that choosing a greater value for as also have a significant689

effect over the growth of both pools, as discussed in Remark 7.690

5 Conclusions and perspectives691

In this paper we formalize and analyze a mathematical model describing an692

evolutionary process with affinity-dependent selection. We use a multi-type693

GW process, obtaining a discrete-time probabilistic model, which includes694

division, mutation, death and selection. This is employed in the context of an-695

tibody affinity maturation in GCs. We believe that a probabilistic approach is696

well suited to the study of Darwinian-like processes such as the one taking place697

in GCs during an immune response. Indeed, this kind of approaches allows to698

better take into account local inhomogeneities related to the discrete nature699

of cells and stochastic fluctuations intrinsic to these processes, conversely to700
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more popular deterministic continuum approaches. There, cell concentrations701

are described by a set of coupled ODEs changing deterministically and conti-702

nuously during time, which has many computational advantages and has often703

been employed to model biological systems (e.g. [21,15,25] for applications to704

the GC reaction). In the main model developed here, we choose a selection705

mechanism which acts both positively and negatively on individuals submit-706

ted to selection. This choice is motivated by the fact that there are biological707

evidence supporting both kind of selection mechanisms: positive affinity-based708

selection by antigen binding as well as selection-dependent apoptosis [38,16].709

The simplified mathematical framework proposed here allow to investigate how710

different kind of B-cell population evolves during the immune response both711

in the initial explosion phase and in the later relaxation phase of typical GCs.712

Indeed, mathematical analysis of the model leads to build matrix M, which713

contains the expectations of each type (Proposition 2) and enables to describe714

the average behavior of all components of the process. Moreover, thanks to the715

spectral decomposition ofM we were able to obtain explicitly some formulas716

giving the expected dynamics of all types. In addition, we exhibited an optimal717

value of the selection rate maximizing the expected number of selected clones718

for the tth-generation (Proposition 6).719

720

This is one possible choice of the selection mechanism. From a mathema-721

tical point of view, matrix M is particularly easy to manipulate, as we can722

obtain explicitly its spectrum. On the other hand, the positive and negative723

selection model leads, for example, to a selection threshold that does not have724

any impact on the evolution of the GC size. From a biological point of view725

this seems counterintuitive, since we could expect that the GC dynamics is726

sensible to the minimal fitness required for positive selection. Moreover, this727

process does not take into account any recycling mechanism, which has been728

confirmed by experiments [39] and which improves GCs’ efficiency. In addition,729

we considered that only the selection mechanism is affinity dependent, while730

in the GC reaction other mechanisms, such as the death and proliferation rate,731

may depend on fitness [13,1]. Of course it is possible to define models with732

affinity-dependent division and death mechanisms with our formalism. This733

would clearly lead to a more complicated model, which can be at least studied734

numerically.735

736

Mathematical tools used in Section 3 can be applied to define and study737

other selection mechanisms. For instance in Section 4 we propose two variants738

of the model analyzed in Section 3, in which selection acts only positively, resp.739

only negatively. This Section shows how our mathematical environment can740

be modified to describe different selection mechanisms, which can be studied741

at least numerically. Moreover, it gives a deeper insight of the previous model742

of positive and negative selection, by highlighting the effects of each selection743

mechanism individually, when they are not coupled.744

745
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From a biological viewpoint there exist many possibilities to improve the746

models proposed in this paper. First of all it is extremely important to fix747

the system parameters, which have to be consistent with the real biological748

process. The choice of N defines the number of affinity level with respect to749

a given antigen. This value can be interpreted in different ways. On the one750

hand it can correspond to the number of key mutations observed during the751

process of Antigen Affinity Maturation, hence be even smaller than 10. On the752

other hand, each mutational event implies a change in the B-cell affinity, slight753

or not if it is a key mutation. In this case the affinity can be modeled as a754

continuous function, hence N corresponds to a possible discretization [41,43].755

To this choice corresponds an appropriate choice of the transition probability756

matrix defining the mutational model over the affinity classes, QN . In most757

numerical simulations we set N = 10, which is a sensible value since experi-758

mentalists observe that high-affinity B-cells differ in their BCR coding gene759

by about 9 mutations from germline genes [15,45]. Nevertheless all mathema-760

tical results are independent from this choice and hold true for all N ≥ 1. The761

selection, division and death rates have also an important impact in the GC762

and selected pool dynamics: in the simulations we set them in order to be in a763

case of explosion of the GC hence appreciate the effects of all parameters over764

the main quantities, but they are not biologically justified. For instance, the765

typical proliferation rate of a B-cell has been estimated between 2 and 4 per766

day and in the literature we found B-cell death rates of the order of 0.5-0.8767

per day [22,45,18]. Hence, if we suppose that a single time step corresponds768

e.g. to 6 hours, a consistent proliferation rate would be rdiv ' 0.75, while the769

death rate rd should be around 0.175. Since over a 6 hours period about 50%770

of B-cells transit from the DZ to the LZ, where they compete for positive771

selection signaling [6,36], we should choose rs ≤ 0.5. It could be further char-772

acterized taking into account its tightly relation with the time of GC peak, as773

highlighted in Section 3.3.774

775

In Section 3.3 we have explicitly determined the optimal value of the se-776

lection rate maximizing the production of output cells at time t for the main777

model of positive and negative selection. It is equal to 1/t independently from778

all other parameters. Moreover, numerical estimations for the model of posi-779

tive selection (Section 4.2) suggest that also in this case there exists an optimal780

value of rs(t), which tends to 1/t at least for t big enough. One has to interpret781

this result as the ideal optimal strength of the selection pressure to obtain a782

peak of the GC production of output cells at a given time step. For example,783

let us suppose again that a time step corresponds to 6 hours. The peak of784

the GC reaction has been measured to be close to day 12 [42], i.e. after ∼ 48785

maturation cycles in our model: for the kind of models we built and analyzed786

in this paper, a constant selection pressure rs of 1/48' 0.02 assures that the787

production of plasma and memory B-cells at the GC peak is maximized. Note788

that with the parameter choice rd = 0.175, rdiv = 0.75 and rs = 0.02, the ex-789

tinction probability of the GC is ' 0.3z0 , z0 being the number of initial seed790

cells. Since the extinction probability is strictly smaller than 1, such a GC791
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will explode with high probability and will be able to assure an intense and792

efficient immune response.793

794

The particular form 1/t of the optimal selection rate for the tth gener-795

ation obtained in Section 3.3 certainly derives from the simplified structure796

of the model of positive and negative selection, even if this trend is further797

confirmed in the model of exclusively positive selection. Nevertheless it should798

be interesting to test the existence of an inverse relation between the selec-799

tion rate and the timing of GC peak. Selection pressure can be quantified e.g.800

through comparative analysis between groups of sequences derived from dif-801

ferent germline V(D)J segments, as proposed by the statistical framework for802

BAyesian estimation of Antigen-driven SELectIoN (BASELINe) [44]. BASE-803

LINe takes into account both mutation targeting bias and substitution bias804

and identifies point mutations grouped by location. Moreover it adresses the805

question of positive versus negative selection: positive selection is identified806

by an increased frequency of replacements, while a decreased frequency in-807

dicates negative selection. According to [44], the selection strength seems to808

vary and also switch from positive to negative in a different way depending809

on the location, i.e. if we are looking to complementary determining regions810

(CDRs), which are more significant for functional selection, or to framework811

regions. This gives stronger motivation to analyse both kind of selection mech-812

anisms, acting both separately and simultaneously, and observe their effects813

over affinity maturation, as we have done in this paper using our simplified814

mathematical framework.815

816

In our models the selection pressure is constant. Since the optimal selection817

rate above depends on time, this suggests to go further in this direction. More-818

over, a time-dependent selection pressure would allow to take into account, for819

instance, the early GC phase in which simple clonal expansion of B-cells with820

no selection occurs [10]. The hypothesis of a selection pressure changing over821

time can be easily integrated in our model. Indeed let us suppose that a selec-822

tion rate rs,1 until time t1 and rs,2 for all t > t1 are fixed. Starting from the823

initial condition i the expectations of each type at time t are given by (iMt
rs,1)824

if t≤ t1 and (iMt1
rs,1M

t−t1
rs,2 ) if t > t1, whereMrs,i is the matrix containing the825

expectations of each type for an evolutionary process with constant selection826

rate rs,i, i = 1,2. In Figure 11 we plot the expected evolution during time of827

all types considering an increasing selection rate. We evaluate the expecta-828

tions of all types following a process with positive and negative selection. We829

set rs = 0 until t = 5, rs = 0.1 from t = 6 to t = 15 and rs = 0.3 for t > 15.830

Numerical simulations show that a time dependent selection rate allows initial831

explosion of the GC, and then progressive extinction, while when parameters832

are fixed, a GW process gives only rise either to explosion or to extinction, as833

shown above. The regulation and termination of the GC reaction has not yet834

been fully understood. In the literature, an increasing differentiation rate of835

GC B-cells is thought to be a good explanation [25], here we show that other836
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Figure 11: (a) Evolution during time of the expected value of all types for
the model of positive and negative selection, with rs varying during time and
N = 10. In particular we set rs = 0 until t = 5, rs = 0.1 from t = 6 to t = 15
and rs = 0.3 from t = 16 to t = 30. Z13 denotes the total size of the GC (i.e.∑N

k=0Zk), and we recall that Z11 corresponds to selected B-cells and Z12 to
dead B-cells. We set rdiv = 0.3, rd = 0.005 and z0 = 100 initial naive B-cells.
All initial B-cells belong to a0 = 5, and the selection threshold is as = 3. (b)
Evolution during time of the expected total size of the GC and the selected
pool respectively, for the same set of parameters as in Figure 11 (a).

reasons could be of importance as well. Similarly, we can let other parameters837

vary for fixed time intervals, as well as decide to alternatively switch on and off838

the mutational mechanism, as already proposed in [29]. This can be obtained839

by alternatively use the identity matrix in place of QN .840

841

Applications of the models presented here to real biological problems and842

data should be further investigated. We propose here some contexts for which843

we believe that our kind of modeling approach could be employed to address844

biologically relevant questions.845

Even if it is still extremely hard to have precise experimental information846

about the evolution of Antibody Affinity Maturation inside GCs, new refined847

techniques start to be available to measure clonal diversity in GCs. As an ex-848

ample, in [34] the authors combine multiphoton microscopy and sequencing849

to understand how different clonal diversification patterns can lead to efficient850

affinity maturation. The models we propose could be used to infer which are851

reasonable mutational transitional probability matrices and selection mecha-852

nisms/pressure to obtain such different scenario and infer if the tendency of853

GC to go or not through homogenizing selection is solely due to the hazard854

or if this is dependent on the kind of antigenic challenge and/or some specific855

characteristics of the host. If this is the case, these results could be particularly856

relevant e.g. in the context of vaccination design, where we are interested in857

find new way to improve the quality of the immune response after vaccination858



Multi-type Galton-Watson processes with affinity-dependent selection 33

challenge.859

Another potential interesting application field is the study of some diseases860

entailing a dysfunction of the immune system, such as in particular Chronic861

Lymphocytic Leukemia (CLL), derived from antigen-experienced B-cells that862

differ in the level of mutations in their receptors [8]. This is the commonest863

form of leukemia in the Western world [12]. In CLL, leukemia B-cells can864

mature partially but not completely, are unable to opportunely undergo mu-865

tations in GCs, and survive longer than normal cells, crowding out healthy866

B-cells. Prognosis varies depending on the ability of host B-cells to mutate867

their antibody gene variable region. Even if major progresses have been made868

in the identification of molecular and cellular markers predicting the expan-869

sion of this disease in patients, the pathology remains incurable [11,12]. Our870

modeling approach could be employed to understand how an “healthy” muta-871

tional matrix is modified in patients affected by CLL, and if other mechanisms872

could contribute to get the prognosis worse. This could eventually provide sug-873

gestions about the causes that lead to CLL, and motivation for further research874

on possible treatments.875
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Appendix990

A Few reminders of classical results on GW processes991

We recall here some classical results about GW processes we employed to derive Proposition992

1 (Section 3.1). For further details the reader can refer to [14].993

Definition 14 Let X be an integer valued rv, pk := P(X = k) for all k ≥ 0. Its probability
generating function (pgf) is given by:

FX(s) =
+∞∑
k=0

pks
k

FX is a convex monotonically increasing function over [0,1], and FX(1) = 1. If p0 6= 0994

and p0 +p1 < 1 then F is a strictly increasing function.995

Definition 15 Given F , the pgf of a rv X, the iterates of F are given by:

F0(s) = s
F1(s) = F (s)
Ft(s) = F (Ft−1(s)) for t≥ 2

Proposition 11996

(i) If E(X) exists (respectively V(X)), then E(X) = F ′X(1) (respectively V(X) = F ′′X(1)−997

(E(X))2 +E(X)).998

(ii) If X and Y are two integer valued independent rvs, then X+Y is still an integer valued999

rv and its pgf is given by FX+Y = FXFY .1000
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Definition 16 We denote by η the extinction probability of the process (Zt)t∈N:

η := lim
t→∞

Ft(0)

Theorem 21001

(i) The pgf of Z(z0)
t , t ∈ N, which represents the population size of the tth-generation1002

starting from z0 ≥ 1 seed cells, is F (z0)
t = (Ft)z0 , Ft being the tth-iterate of F (Equation1003

(2)).1004

(ii) The expected size of the GC at time t and starting from z0 B-cells is given by:1005

E(Z(z0)
t ) = z0 (E(Zt)) = z0 (E(Z1))t , (13)

(iii) η is the smallest fixed point of the generating function F , i.e. η is the smallest s s.t.1006

F (s) = s.1007

(iv) If E(Z1) =:m is finite, then:1008

– if m≤ 1 then F has only 1 as fixed point and consequently η = 1;1009

– if m> 1 then F as exactly a fixed point on [0,1[ and then η < 1.1010

(v) Denoted by ηz0 the probability of extinction of (Z(z0)
t ), one has:

ηz0 = ηz0

where η is given by (iii).1011

Proposition 1 of Section 3.1 follows by applying Theorem 2 and Equation (1).1012

B Proof of Proposition 21013

For all j ∈ {0, . . . ,N+2} the generating function of Zj gives the number of offspring of each1014

type that a type j particle can produce. It is defined as follows:1015

f (j)(s0, . . . , sN+2) =
∑

k0,...,kN+2≥0

p(j)(k0, . . . ,kN+2)sk0
0 · · ·s

kN+2
N+2 , (14)

0≤ sα ≤ 1 for all α ∈ {0, . . . ,N + 2}
where p(j)(k0, . . . ,kN+2) is the probability that a type j cell produces k0 cells of type 0, k11016

of type 1, . . . , kN+2 of type N + 2 for the next generation.1017

We denote:1018

– p(k) = (p(0)(k), . . . ,p(N+2)(k)), for k = (k0, . . . ,kN+2) ∈ ZN+3
+1019

– f(s) = (f (1)(s), . . . ,f (N+1)(s)), for s = (s0, . . . , sN+2) ∈ CN+3 := [0,1]N+31020

Then the probability generating function of Z1 is given by:1021

f(s) =
∑

k∈ZN+3
+

p(k)sk, s ∈ CN+3 (15)

Again, the generating function of Zt, ft(s), is obtained as the tth-iterate of f , and it holds
true that:

ft+r(s) = ft[fr(s)], s ∈ CN+3.

Let mij := E[Z(i)
1,j ] the expected number of offspring of type j of a cell of type i in one

generation. We collect all mij in a matrix,M= (mij)0≤i,j≤N+2. We have [3]:

mij =
∂f (i)

∂sj
(1)
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and:1022

E[Z(i)
t,j ] =

∂f
(i)
t

∂sj
(1) (16)

Finally:1023

E[Z(i)
t ] = iMt (17)

One can explicitly derive the elements of matrixM for the process described in Defini-1024

tion 13.1025

Proposition M is a (N + 3)× (N + 3) matrix defined as a block matrix:

M=
(

M1 M2
02×(N+1) I2

)
Where:1026

– 02×(N+1) is a 2× (N + 1) matrix with all entries 0;1027

– In is the identity matrix of size n;1028

– M1 = 2(1− rd)rdiv(1− rs)QN + (1− rd)(1− rdiv)(1− rs)IN+11029

– M2 = (m2,ij) is a (N + 1)×2 matrix where for all i ∈ {0, . . . ,N}:1030

– if i≤ as:1031

m2,i1 = (1− rd)(1− rdiv)rs+ 2(1− rd)rdivrs
as∑
j=0

qij ,1032

m2,i2 = rd+ 2(1− rd)rdivrs
N∑

j=as+1

qij1033

– if i > as:1034

m2,i1 = 2(1− rd)rdivrs
as∑
j=0

qij ,1035

m2,i2 = rd+ (1− rd)(1− rdiv)rs+ 2(1− rd)rdivrs
N∑

j=as+1

qij1036

Proof One has to compute all f (i)(s) for i = 0, . . . ,N + 2, which depend on rd, rdiv , rs,1037

as and the elements of QN . First, the elements of the (N + 2)th and (N + 3)th-lines are1038

obviously determined: all selected (resp. dead) cells remain selected (resp. dead) for next1039

generations, as they can not give rise to any other cell type offspring (we do not take into1040

account here any type of recycling mechanism). Let i ∈ {0, . . . ,N} be a fixed index: we1041

evaluate mij for all j ∈ {0, . . . ,N+2}. The first step is to determine the value of p(i)(k) for1042

k = (k0, . . . ,kN+2) ∈ ZN+3
+ . There exists only a few cases in which p(i)(k) 6= 0, which can1043

be explicitly evaluated:1044

– p(i)(0, . . . ,0,1) =
{
rd if i≤ as
rd+ (1− rd)(1− rdiv)rs otherwise

1045

– p(i)(0, . . . ,0,1,0) =
{

(1− rd)(1− rdiv)rs if i≤ as
0 otherwise

1046

– p(i)(0, . . . ,0,1
i
,0, . . . ,0,0) = (1− rd)(1− rdiv)(1− rs)1047

– p(i)(0, . . . ,0,2) = (1− rd)rdivr2
s

N∑
j1=as+1

qij1

N∑
j2=as+1

qij21048

– p(i)(0, . . . ,0,2,0) = (1− rd)rdivr2
s

as∑
j1=0

qij1

as∑
j2=0

qij21049



38 Irene Balelli, Vuk Milišić, Gilles Wainrib

– p(i)(0, . . . ,0,1,1) = 2(1− rd)rdivr2
s

as∑
j1=0

qij1

N∑
j2=as+1

qij21050

– For all j1 < j2 ∈ {0, . . . ,N}:1051

– p(i)(0, . . . ,0, 2
j1
,0, . . . ,0,0) = (1− rd)rdiv(1− rs)2q2

ij1
1052

– p(i)(0, . . . ,0, 1
j1
,0, . . . ,0, 1

j2
,0, . . . ,0,0) = 2(1− rd)rdiv(1− rs)2qij1qij21053

– p(i)(0, . . . ,0, 1
j1
,0, . . . ,0,1) = 2(1− rd)rdivrs(1− rs)qij1

N∑
j2=as+1

qij21054

– p(i)(0, . . . ,0, 1
j1
,0, . . . ,0,1,0) = 2(1− rd)rdivrs(1− rs)qij1

as∑
j2=0

qij21055

– p(i)(k) = 0 otherwise1056

We can therefore evaluate f (i)(s), with s = (s0, . . . , sN+2) ∈ CN+3.1057

1058

For all i≤ as:1059

f (i)(s) = rdsN+2 + (1− rd)(1− rdiv)rssN+1 + (1− rd)(1− rdiv)(1− rs)si

+ (1− rd)rdivr2
s

(
N∑

j1=as+1

qij1

N∑
j2=as+1

qij2s
2
N+2

+
as∑
j1=0

qij1

as∑
j2=0

qij2s
2
N+1 + 2

as∑
j1=0

qij1

N∑
j2=as+1

qij2sN+1sN+2

)

+ (1− rd)rdiv(1− rs)2

(
N∑
j1=0

q2
ij1s

2
j1 + 2

N∑
j1=0

qij1

N∑
j2<j1=0

qij2sj1sj2

)

+ 2(1− rd)rdivrs(1− rs)
N∑
j1=0

qij1

(
N∑

j2=as+1

qij2sN+2 +
as∑
j2=0

qij2sN+1

)
sj1

(18)

If i > as then f (i)(s) is the same except for the first line, which becomes:

(rd+ (1− rd)(1− rdiv)rs)sN+2 + (1− rd)(1− rdiv)(1− rs)si

The values of each mij are now obtained by evaluating all partial derivatives of f (i)(s) in
1, keeping in mind that for all i ∈ {0, . . . ,N},

∑N

j=0 qij = 1. ut

C Deriving the extinction probability of the GC from the1060

multi-type GW process (Section 3.2)1061

Let us recall some results about the extinction probability for multi-type GW processes [3].1062

Definition 17 Let q(i) be the probability of eventual extinction of the process, when it1063

starts from a single type i cell. As above bold symbols denote vectors i.e. q := (q(0), . . . , q(N+2))≥1064

0.1065
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Definition 18 We say that (Zt) is singular if each particle has exactly one offspring, which1066

implies that the branching process becomes a simple MC.1067

Definition 19 Matrix M is said to be strictly positive if it has non-negative entries and1068

there exists a t s.t.
(
Mt
)
ij
> 0 for all i, j. (Zt) is called positive regular iff M is strictly1069

positive.1070

Notation 1 Let u, v ∈ Rn. We say that u≤ v if ui ≤ vi for all i ∈ {1, . . . ,n}. Moreover, we1071

say that u< v if u≤ v and u 6= v.1072

Theorem 3 Let (Zt) be non singular and strictly positive. Let ρ be the maximal eigenvalue1073

of M. The following three results hold:1074

1. If ρ < 1 (subcritical case) or ρ = 1 (critical case) then q = 1. Otherwise, if ρ > 1 (su-1075

percritical case), then q < 1.1076

2. lim
t→∞

ft(s) = q, for all s ∈ CN+3.1077

3. q is the only solution of f(s) = s in CN+3.1078

The spectrum of matrix M defined in Definition 2 (and recalled in Appendix B) is1079

obtained as follows:1080

Proposition 12 Let M be defined as a block matrix as in Proposition 2. Let λM,i be its1081

ith-eigenvalue. The spectrum of M is given by:1082

– For all i ∈ {0, . . . ,N}, λM,i = (1− rd)(1− rs)(1 + rdiv(2λi− 1)), where λi is the ith-1083

eigenvalue of matrix QN .1084

– whereas λM,N+1 = 1 with multiplicity 2.1085

Proof AsM is a block matrix with the lower left block composed of zeros, then Spec(M) =
Spec(M1)∪Spec(I2). The result follows. ut

Therefore we obtain the same condition as in Proposition 1 for the extinction probability1086

in the GC:1087

Proposition 13 Let q be the extinction probability for the process (Zt) defined in Defini-1088

tion 13 and restricted to the first N+1 components ( i.e. we refer only to matrixM1, which1089

defines the expectations of GC B-cells). Therefore:1090

– if rs ≥ 1−
1

(1− rd)(1 + rdiv)
, then q = 11091

– otherwise q < 1 is the smallest fixed point of f(s) in CN+3.1092

Proof QN is a stochastic matrix, therefore its largest eigenvalue is 1. The corresponding
eigenvalue of matrixM1 is: λM1,1 = (1−rd)(1−rs)(1+rdiv). The proposition is proved by

observing that λM1,1 ≤ 1⇔ rs ≥ 1−
1

(1− rd)(1 + rdiv)
and applying Theorem 3 (note that

M1 is positive regular: this is not the case for matrixM). ut

D Expected size of the GC derived from the multi-type GW1093

process (Section 3.2)1094

Proposition Let i be the initial state, z0 := |i| its 1-norm (|i| :=
∑N+2

j=0 ij). The expected
size of the GC at time t:

N∑
k=0

(iMt)k = |i|((1− rd)(1 + rdiv)(1− rs))t
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Proof For the sake of simplicity, let us suppose that the process starts from a single B-cell1095

belonging to the affinity class a0 = i with respect to the target trait. We do not need to1096

specify the transition probability matrix used to define the mutational model allowed.1097

1098

We recall the expression ofMt obtained by iteration:

Mt =

 Mt
1

t−1∑
k=0

Mk
1M2

02×(N+1) I2


Therefore we can claim that (iMt)k corresponds to the kth-component of the ith-row1099

of matrix Mt
1 = (2(1− rd)rdiv(1− rs)QN + (1− rd)(1− rdiv)(1− rs)IN+1)t, where QN is1100

a stochastic matrix. Matrices A := 2(1− rd)rdiv(1− rs)QN and B := (1− rd)(1− rdiv)(1−1101

rs)IN+1 clearly commute, therefore:1102

(A+B)t =
t∑

j=0

CjtA
t−jBj (19)

For all j, 0≤ j ≤ t:1103

At−jBj = 2t−j(1− rd)t−jrt−j
div

(1− rs)t−j(1− rd)j(1− rdiv)j(1− rs)jQt−jN

= (1− rd)t(1− rs)t(2rdiv)t−j(1− rdiv)jQt−jN

Hence:

(A+B)t = (1− rd)t(1− rs)t
t∑
j=0

Cjt (2rdiv)t−j(1− rdiv)jQt−jN

And consequently:1104

N∑
k=0

(iMt)k =
N∑
k=0

(
i(A+B)t

)
k

= (1− rd)t(1− rs)t
t∑

j=0

Cjt (2rdiv)t−j(1− rdiv)j
N∑
k=0

(
iQt−jN

)
k

Since QN is a stochastic matrix, for all n, QnN is still a stochastic matrix, i.e. the entries of1105

each row of QnN sum to 1. Therefore:1106

N∑
k=0

(iMt)k = (1− rd)t(1− rs)t
t∑

j=0

Cjt (2rdiv)t−j(1− rdiv)j

= (1− rd)t(1− rs)t(2rdiv + 1− rdiv)t = (1− rd)t(1− rs)t(1 + rdiv)t ,

as stated by Equation (3) for z0 = 1. This result can be easily generalized to the case of1107

z0 ≥ 1 initial B-cells.1108

E Proof of Proposition 51109

Proposition Let us suppose that at time t = 0 there is a single B-cell entering the GC
belonging to the ith-affinity class with respect to the target cell. Moreover, let us suppose
that QN =RΛNL. For all t≥ 1, the expected number of selected B-cells at time t, is:

E(St) = rs(1− rs)t−1(1− rd)t
N∑
`=0

(2λ`rdiv + 1− rdiv)t
as∑
k=0

ri`l`k ,
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Proof Let us suppose, for the sake of simplicity, that QN is diagonalizable:1110

QN =RΛNL , (20)

We can prove by iteration that:1111

Mt =

 Mt
1

t−1∑
k=0

Mk
1M2

02×(N+1) I2

 (21)

It follows from (20) and (21) that for all t≥ 1,Mt can be written as:1112

Mt =

 RDtL

(
R

t−1∑
k=0

DkL

)
M2

02×(N+1) I2

 , (22)

where D= 2(1−rd)rdiv(1−rs)ΛN +(1−rd)(1−rdiv)(1−rs)IN+1 is a diagonal matrix. We1113

obtain its expression thanks to Proposition 2.1114

1115

Moreover, by Proposition 3 and Equation (20) we have:1116

M̃=
(

RD̃L M̃2
02×(N+1) I2

)
, (23)

where D̃ = 2(1− rd)rdivΛN + (1− rd)(1− rdiv)IN+1 is a diagonal matrix.1117

1118

Proposition 4 claims:

E(St) = rs

as∑
k=0

(
iMt−1M̃

)
k

From Equations (22) and (23):

Mt−1M̃=

RDt−1D̃L RDt−1LM̃2 +

(
R

t−2∑
k=0

DkL

)
M2

02×(N+1) I2


Since, by hypothesis, i = (0, . . . ,0,1,0, . . . ,0,0), with the only 1 being at position i, 0≤ i≤N ,1119

then
(

iMt−1M̃
)
denotes the ith-row of matrixMt−1M̃. Therefore, we are interested in the1120

sum between 0 and as of the elements of the ith-row of matrixMt−1M̃, i.e. of the ith-row1121

of matrix RDt−1D̃L, since clearly as ≤N . Dt−1D̃ is a diagonal matrix whose `th-diagonal1122

element is given by:1123 (
Dt−1D̃

)
`

= (2(1− rd)rdiv(1− rs)λ`+ (1− rd)(1− rdiv)(1− rs))t−1

·(2(1− rd)rdivλ`+ (1− rd)(1− rdiv))
= (1− rs)t−1(1− rd)t (2λ`rdiv + 1− rdiv)t

The result follows observing that:
(
RDt−1D̃L

)
ik

=
∑N

`=0

(
Dt−1D̃

)
`
ri`l`k. ut
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Proposition For all t∈N the value rs(t) which maximizes the expected number of selected
B-cells at the tth maturation cycle is:

rs(t) =
1
t

Hypothesis 1 QN converges through its stationary distribution, denoted by m = (mi), i ∈1125

{0, . . . ,N}.1126

Hypothesis 2 Zt explodes, where (Zt)t∈N is given by Definition 4.1127

Let Z̃t, t≥ 0 be the random variable describing the GC-population size at time t before1128

the selection mechanism is performed for this generation. For the sake of simplicity, let us1129

suppose Z̃0 = 1. (Z̃t)t∈N is a MC on {0,1,2, . . .}. Denoted by p̃k := P(Z̃1 = k), k ∈ {0,1,2}:1130 {
p̃0 = rd
p̃1 = (1− rd)(1− rdiv)
p̃2 = (1− rd)rdiv

(24)

It follows: m̃ := E(Z̃1) = (1− rd)(1− rdiv) + 2(1− rd)rdiv = (1− rd)(1 + rdiv).1131

1132

Conditioning to Zt = k, Z̃t+1 is distributed as the sum of k independent copies of Z̃1,1133

which gives:1134

E(Z̃t) = E(Zt−1)E(Z̃1) = E(Z1)t−1E(Z̃1) = (1− rd)t(1 + rdiv)t(1− rs)t−1 (25)
Thanks to Hypotheses 1 and 2, if t is big enough, there is approximately a proportion1135

of mi elements in the ith-affinity class with respect to x. Therefore, on average at time t1136

there are approximately
∑as

i=0miE(Z̃t) B-cells in the GC belonging to an affinity class with1137

index at most equal to as with respect to x, before the selection mechanism is performed1138

for this generation. Each one of these cells can be submitted to selection with probability1139

rs, and in this case it will be positively selected. Hence:1140

E(St)' rs
as∑
i=0

miE(Z̃t) = (1− rd)t(1 + rdiv)t(1− rs)t−1rs

as∑
i=0

mi , (26)

which is maximized at time t≥ 1 for rs(t) = 1/t.1141

Remark 8 One observes that the approximation in (26) gives the same value for the optimal1142

rs(t) as in Proposition 6. Nevertheless, it does not allow to describe exactly the behavior of1143

E(St), since it is obtained by approximating the distribution of B-cells in the GC with their1144

stationary distribution.1145
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