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Abstract Within the germinal center in follicles, B-cells proliferate, mutate6

and differentiate, while being submitted to a powerful selection: a micro-7

evolutionary mechanism at the heart of adaptive immunity. A new foreign8

pathogen is confronted to our immune system, the mutation mechanism that9

allows B-cells to adapt to it is called somatic hypermutation: a programmed10

process of mutation affecting B-cell receptors at extremely high rate. By con-11

sidering random walks on graphs, we introduce and analyze a simplified math-12

ematical model in order to understand this extremely efficient learning process.13

The structure of the graph reflects the choice of the mutation rule. We focus14

on the impact of this choice on typical time-scales of the graphs’ exploration.15

We derive explicit formulas to evaluate the expected hitting time to cover a16

given Hamming distance on the graphs under consideration. This character-17

izes the efficiency of these processes in driving antibody affinity maturation.18

In a further step we present a biologically more involved model and discuss19

its numerical outputs within our mathematical framework. We provide as well20

limitations and possible extensions of our approach.21
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1 Introduction30

Understanding the role and functional implication of mutations is a central31

question in biological evolutionary theory [27,79,33,25], but also for the study32

of evolutionary algorithms [5,2]. Beyond the mutation rate, which is natu-33

rally an important parameter, our aim in this article is to highlight the role34

of various mutation rules on the exploration of the space of traits. In our35

mathematical framework, configurations are represented as vertices of a graph36

which are connected if there exists a mutation allowing to pass from one trait37

to another. We are mainly interested in understanding the characteristic time-38

scales for the exploration of the state-space as a function of the mutation rule.39

To this end, we relate mutation rules with specific graph topologies and build40

upon random walks on graphs and spectral graph theories to analyze resulting41

time-scales.42

43

More precisely, beyond general theoretical results, we are particularly in-44

terested to apply our framework to the B-cell affinity maturation in Germinal45

Centers (GCs). The adaptive immune system is able to create a specific re-46

sponse against almost any kind of pathogens penetrating our organism and47

inflicting diseases. This task is performed by the production of high affinity48

antigen-specific antibodies. These proteins are produced by B-lymphocytes49

which are submitted to a learning process improving their affinity to recog-50

nize a particular antigen. This process is called Antibody Affinity Maturation51

(AAM) and takes place in GCs [54]. Even if substantial progress has been52

made in adaptive immunology, since somatic hypermutation was discovered53

by the nobel price Susumu Tonegawa [74] in 1987, there are still facts that re-54

main unclear about the GC reaction and the exact dynamics of AAM. Indeed,55

it seems difficult to make exact measurements of the antigenic repertoire in56

vivo inside a single GC, following and sequencing each B-cell at any time, or57

to have precise spatial and temporal data about lymphocytes within the GC58

during an immune response, or to understand the exact dynamic of mutation59

and selection of B-cells while they are submitted to AAM (e.g. [26,57]). Never-60

theless, some refined techniques start to be available [72,31], showing possible61

correlations between proliferation and mutation rates with respect to B-cells’62

affinity to the presented antigen. This provides further motivation for setting63

appropriate mathematical frameworks to describe such systems.64

65
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The affinity of a B-cell is biologically observed as a matching between66

the B-cell receptor (BCR) and the antigen. We aim at understanding how67

mutation rules allow to explore possible trait-configurations of BCRs. The68

mutational mechanism that B-cells undergo in GCs to improve their affinity69

is called Somatic Hypermutation (SHM): it targets, at a very high rate, the70

DNA encoding for the specific portion of the BCR involved in the binding71

with the antigen, called Variable (V) region. SHM can introduce mutations72

at all four nucleotides, and mutation hot-spots have been identified [73,23,73

71]. The effect of these mutations on the BCR, once expressed on the outer74

surface of B-cells, is very complex, as the substitution of a single amino-acid75

can modify the geometrical structure of the BCR, creating or deleting bonds76

(see [1], Chapter 4, for more details about the crystal structure of BCRs and77

their binding with antigens).78

79

Although mutations occur at the level of the DNA, their outcome might be80

expressed at the level of amino-acids composing the BCR. In the present paper,81

SHMs are taken in account this way (Section 4.3). However, the structure of82

our mathematical model can be left substantially unchanged when considering83

mutations at the DNA level, which leads to modify the definition of affinity84

and the size of the state-space.85

86

There already exists a certain number of mathematical models about GC87

reaction and AAM. In particular, [42,43] proposed deterministic population88

modeling of SHM and AAM, considering for instance the hypothesis of recy-89

cling mechanisms during GC reaction, later investigated by experiments [76].90

In [56,59,29,36], the authors introduced and discussed several immunological91

problems, such as the size of the repertoire, or the strength of antigen-antibody92

binding, or the pourcentage of recycling. They provide suitable mathematical93

tools, using both deterministic and probabilistic approaches, together with nu-94

merical simulations. More recently, biologically very detailed models of GCs95

were proposed [50,65], using, for instance, agent-based models [51], mostly an-96

alyzed through extensive numerical simulations. Our aim here is not to build97

a very complex model, but rather to contribute to the theoretical foundation98

of adaptive immunity modeling through the mathematical analysis of generic99

mutation models on graphs. So far, this approach has not been developed and100

applied to GC reaction and AAM modeling. In particular, this framework en-101

ables the study of various mutation rules, as for instance, affinity-dependent102

mutations, which are currently debated in the biological literature [31]. Our103

mathematical framework shares some similarities with the NK models pro-104

posed by S. A. Kauffman and E. D. Weinberger in [39], for instance the choice105

of the hypercube vertex set as the basic structure to define the affinity land-106

scape of BCRs. Nevertheless their approach and goals are fundamentally dif-107

ferent from ours. Indeed, in [39] the graph which defines the mutational rule108

is predefined (i.e. they refer only to the basic mutational rule we introduced109

as well in Section 2), while the affinity function changes according to the main110

parameters of the model, N and k for instance. Therefore, the random walks111
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over these affinity landscapes, modeling the maturation of the immune re-112

sponse, are biased with respect to the affinity gradient. In our mathematical113

framework the structure of the graph reflects the mutational rule, hence it is114

not predefined. Moreover, since in this paper we only take into account mu-115

tations, the random walks over the state-space are not biased by the fitness116

of each trait to the target one. From our point of view the selection pressure117

should be taken into account as a separate operator (see below).118

119

This research is also motivated by important biotechnological applica-120

tions. The fundamental understanding of the evolutionary mechanisms in-121

volved in antibody affinity maturation have been inspiring many methods for122

the synthetic production of specific antibodies for drugs, vaccines or cancer im-123

munotherapy [4,45,67]. Indeed, this production process involves the selection124

of high affinity peptides and requires smart methods to generate an appropriate125

diversity [18]. Beyond the biomedical motivations, the study of this learning126

process has also given rise in recent years to a new class of bio-inspired algo-127

rithms such as in [16,58], mainly addressed to solve optimization and learning128

problems [13].129

130

In this article, we consider pure mutational models obtained as random131

walks on graphs given by alterations of the edge set of the N -dimensional132

hypercube. We focus on the variation of hitting times as a function of the un-133

derlying graphs, hence relating mutation rules to the characteristic time-scales134

of the process. Our intention here is not to provide biologically relevant out-135

comes, since the AAM involves several mechanisms (division, selection, etc)136

that we do not take into account in this article. Instead we provide a rigorous137

analysis of an essential single building block: mutation. We study the structure138

of RWs on the hypercube and compute hitting times depending on the graph139

associated to the mutational rule. We prove that they are proportional to the140

number of vertices (see Table 2). Therefore our specific approach consists in141

observing how different mutational rules allow to explore the state-space and142

lead a naive B-cell to build the fittest possible trait. We are not interested143

here in proposing new statistical or phylogenetic strategies to infer the more144

realistic phylogenetic trees given a final antibodies repertoire [30,17]. Nev-145

ertheless we define accurately the biological context since it is relevant for146

further steps. Clearly, other mechanisms such division and mutations provide147

significant biases of hitting times, our approach consists in studying precisely148

the differences when enriching our model with supplementary bricks. For in-149

stance, by branching we introduce a population dispatched on the vertices of150

the hypercube which decreases the hitting time, but at the cost of the bio-151

logical maintaining of the population [6]. This is our strategy here and in the152

forthcoming papers [6,7].153

154

Section 2 contains results on random walks theory [55,52,61] and, more155

specifically, random walks on graphs [49,3]. This is a topic of active research156

due to the great number of important applications in recent years, such as157
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graph clustering [64], ranking algorithms for search-engines [10,37], or social158

network modeling [41,32,44]. We start with the most basic mutational model159

which is the simple random walk on the N -dimensional hypercube [22,34,21,160

77]. We set notations in order to define the models, then we overview various161

properties of random walks on graphs, and establish particular results in the162

case of the hypercube. In Section 3 we study several mutation rules and their163

effects on the structure of the graph and, consequently, its associated random164

walk. In particular we compute the hitting times: starting from a random initial165

condition, we count the expected time to reach the target node with the best166

fitness. We use both spectral and probabilistic methods. We especially focus on167

two mutation rules that are the combination of simpler ones: the class switch168

of 1 or 2-length strings (Section 3.1.3), where the mutation rule depends on the169

distance to the target, and the mutation rule which allows to do more than a170

single mutation at each step (Section 3.1.4). Table 2 in Section 3.2 summarizes171

the main results of Section 2 and 3: we display expected times to reach some172

position of the graph, as a function of each mutation rule. Finally, Section 4 is173

dedicated to modeling aspects and discussions about possible extensions and174

limitations of the proposed framework.175

2 A basic mutational model176

In this section we set the general mathematical framework, which we keep in177

order to pattern and study mutational mechanisms discussed in the current178

section and in Section 3. Indeed, we state a basic mutational model. The choice179

of this environnement is motivated by the modeling of amino-acids chains and180

their modifications during SHM. It is for this reason that we often recall bio-181

logical facts and refer to BCRs and antigens. Nevertheless, this framework is182

flexible and adapts to different mutational rules in a more general evolutionary183

context.184

185

We assume that it is possible to classify the amino-acids into 2 classes186

denoted by 0 and 1 respectively (they could represent amino-acids negatively187

and positively charged respectively). Henceforth BCRs and antigen are repre-188

sented by binary strings of same fixed length N , hence, the state-space of all189

possible BCR configurations is {0,1}N . We will give some more details about190

these hypotheses in Section 4.3.191

Definition 1 We denote byHN the standardN -dimensional hypercube. BCR192

and antigen configurations are represented by vertices of HN , denoted by xi193

with 1≤ i≤ 2N , or sometimes simply by their indices. We denote the antigen194

target vertex by x: it is given at the beginning of the process and never changes.195

We suppose that there is a single B-cell entering the GC reaction. The196

configuration of its receptors is denoted by X0. If Xt is the configuration of197

the BCR after tmutations, then depending on the mutational rule, one or more198

bits in Xt can change after the next mutation. This gives rise to a Random199
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Walk (RW) on {0,1}N , where a mutation on the BCR corresponds to a jump200

to a neighbor node. Of course, the definition of neighbors changes depending201

on the mutation rules we introduce (we specify the neighborhood set each time202

we discuss a new mutation rule). In a general way:203

Definition 2 Given xi, xj ∈ {0,1}N , we say that xi and xj are neighbors,204

and denote xi ∼ xj , if there exists at least one edge (or loop) between them.205

As far as the complementarity is concerned, we have to make a further206

simplification. As we have already discussed in the Introduction, the tridimen-207

sional structure of the BCR is hard to model. For this reason we consider a208

linear contact, i.e. positively charged amino-acids are complementary to neg-209

atively charged ones when they are at the same position within the binary210

string. For the sake of simplicity, we state that 0 matches with 0 and 1 with211

1 (we can suppose that the antigen representing string is given in its comple-212

mentary form). Formally, we define the affinity as the number of identical bits213

shared by the BCR representing string and x. Equivalently, one can see x as214

the optimal BCR trait, with the highest affinity for the immunizing antigen.215

Definition 3 For all xi ∈ {0,1}N , its affinity with x, aff(xi,x) is given by216

aff(xi,x) :=N−h(xi,x), where h(·, ·) : ({0,1}N×{0,1}N )→{0, . . . ,N} returns217

the Hamming distance.218

Definition 4 For all x = (x1, . . . ,xN ), y = (y1, . . . ,yN ) ∈ {0,1}N , their Ham-
ming distance is given by:

h(x,y) =
N∑
i=1

δi where δi =

1 if xi 6= yi

0 otherwise

Other definitions of affinity are often (e.g. [50]) constructed as functions219

of the Hamming distance aff(xi,x) = F (h(xi,x)), for instance with F given220

by the Gaussian probability density function. These modeling aspects become221

important when considering the selection mechanism, which is not treated in222

the present article. Therefore, for our purpose, we can focus on the above def-223

inition of affinity.224

225

As a first basic mutational rule, we study single switch-type mutations: at226

each time step a randomly chosen amino-acid within the BCR binary string227

switches its amino-acid class. This clearly leads us to a Simple Random Walk228

(SRW) on HN . Indeed, we formalize it as follows:229

Definition 5 Let Xn ∈ HN be the BCR at step n. Let i ∈ {1, . . . ,N} be a ran-230

domly chosen index. Then Xn+1 := (Xn,1, . . . ,Xn,i−1,1−Xn,i,Xn,i+1, . . . ,Xn,N ).231

Remark 1 Referring to Definition 2 of neighborhood, as we consider here the232

standard N -dimensional hypercube, ∀xi, xj ∈HN , xi ∼ xj ⇔ h(xi,xj) = 1.233
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We denote the transition probability matrix of the SRW on HN by PN or
simply by P if no misunderstanding is possible. For all xi, xj ∈ HN :

P(Xn = xj |Xn−1 = xi) =: p(xi,xj) =

1/N if xj ∼ xi,

0 otherwise.

The entries of P are (p(xi,xj))xi,xj∈HN . The unique stationary distribution234

for P is the homogeneous probability distribution on HN , denoted by π:235

∀xi ∈ HN , πi := π(xi) = 2−N . Indeed, (Xn)n≥0 is clearly reversible with re-236

spect to π. The uniqueness follows by the Ergodic Theorem.237

238

We also recall a property of HN that we will have to deal with: the bipar-239

titeness.240

Definition 6 A graph G= (V,E) is bipartite if there exists a partition of the241

vertex set V = V1 tV2, s.t. every edge connects a vertex in V1 to a vertex in242

V2.243

Typically a bipartition of the hypercube can be obtained by separating the244

vertices with an odd number of 1’s in their string from those with an even245

number of 1’s. In Figure 1 we emphasize the bipartite structure of the hyper-246

cube H3.247

248

110 111

101100

010 011

001000

110 111

101 100

010011

001000

Figure 1: Hypercube for N = 3 showing its bipartite structure.

A direct and elementary consequence of this property is the periodic be-249

havior of the SRW on HN , which in particular causes some problems for the250

convergence through π. This problem is classically overcome by adding N251

loops at each vertex, that makes this RW become a lazy Markov chain [48].252

The corresponding transition probability matrix is given by PL := (P+I2N )/2,253

where In denotes the n-dimensional identity matrix.254
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2.1 Spectral analysis255

Most matrices describing the characteristics of the SRW on HN can be ob-256

tained recursively, thanks to the recursive construction of the hypercube and257

the operation of cartesian product between two graphs.258

Definition 7 Given two graphsG1 = (V1,E1) andG2 = (V2,E2), the cartesian259

product between G1 and G2, G1×G2, is a graph with vertex set V = V1×V2 =260

{(u,v) |u ∈ V1, v ∈ V2}. Two different vertices (u1,v1) and (u2,v2) are adjacent261

in G1×G2 if either u1 = u2 and v1v2 ∈ E2 or v1 = v2 and u1u2 ∈ E1.262

It is a known result [34] that for N > 1, HN is obtained from HN−1 as:263

HN =HN−1×H1. This characteristic implies the recursive construction of the264

adjacency matrix and allows to determine the corresponding eigenvalues and265

eigenvectors. We denote by AN the adjacency matrix corresponding to HN ;266

by In the n-dimensional identity matrix. Then we have:267

A1 =
0

1

 0 1

1 0

 ; A2 =

00

01

10

11


0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

=

A1 I2

I2 A1



Here we wrote in gray the strings corresponding to each row: in order to obtain268

the adjacency matrices in this form, we simply have to order vertices of HN269

in lexicographical order.270

271

By iteration we obtain [28]:

An =

An−1 I2n−1

I2n−1 An−1


This iterative construction allows also to determine recursively the spectra272

of AN and, consequently, of PN = AN/N (as HN is a N -regular graph, the273

transition probability matrix corresponds to the adjacency matrix divided by274

N). Here below we recall the explicit values of the eigenvalues of AN and PN275

respectively. An extensive proof can be found in [28].276

Theorem 1 The eigenvalues of AN are: N,N − 2,N − 4, . . . ,−N + 4,−N +277

2,−N . If we order the N + 1 distinct eigenvalues of AN as λA1 > λA2 > · · · >278

λAN+1, then the multiplicity of λAk is
( N
k−1
)
, 1≤ k ≤N +1279

Corollary 1 The eigenvalues of PN are: 1,1−2/N,1−4/N,. . . ,−1+4/N,−1+280

2/N,−1. If we order the N + 1 distinct eigenvalues of P as λ1 > λ2 > · · · >281

λN+1, then the multiplicity of λk is
( N
k−1
)
, 1≤ k ≤N +1282
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Finally we recall the expression of the eigenvectors of AN (and then also
of P), that we gather together into a matrix. The eigenvectors for A1 are:

z1 =

 1

1

 for λA1 = 1 and z2 =

 1

−1

 for λA2 =−1⇒Z1 = [z1,z2]

Thanks to the relations between the cartesian product of two graphs and
their eigenvectors, it follows by induction that [28]:

Zn =

Zn−1 Zn−1

Zn−1 −Zn−1


Finally, one renormalizes each vector zi multiplying it by

√
2−N . We denote283

by QN the resulting matrix, where each column is a 2N vector vi =
√

2−Nzi.284

2.2 Evolution of Hamming distances to a fixed node285

In this section we focus on the distance process, which is the process obtained286

from the SRW on HN by looking at the Hamming distance between the B-cell287

representing string at each mutation step and the antigen target representing288

string. More precisely, (Dn)n≥0 := (h(Xn,x))n≥0 is a RW on {0, . . . ,N}. From289

a biological point of view this process represents the evolution of the affinity290

of the mutating B-cell to the presented antigen. The idea of analyzing the dis-291

tance of a RW on a graph to some position, where distance means the minimal292

number of steps that separate two positions, is not unusual. N. Berestycki in293

[9] applied that to genome rearrangements, where the distance on the graph294

corresponds biologically to the minimal number of reversals or other mutations295

needed to transform one genome into the other. Due to the perfect symme-296

try of the graph under consideration and our particular choice of the affinity297

(which is directly related to the Hamming distance), by studying (Dn) we298

reduce considerably the number of vertices, passing from 2N to N + 1 nodes,299

without losing the most important properties of the corresponding transition300

matrix. However, if we consider more complicated models of mutation, it is301

not possible to reduce the study of the process to the distances to a fixed node.302

In Figure 2 we show explicitly how to pass from (Xn) to (Dn): since x is fixed303

and known, we are able to group the vertices by their Hamming distance to x.304

Moreover we keep the original probability of going to the next distance class305

by considering weighted and directed edges.306

307

The transition probability matrix for (Dn), denoted by Q, is given by308

Proposition 1 below.309
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1
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1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

0
1

2
3

1

1
3

2
3

2
3

1
3

1

Figure 2: From the (Xn) process (on the left) to the (Dn) process (on the
right) (case N = 3). Near each arrow the probability to travel in the corre-
sponding direction is exhibited. The red vertex always corresponds to x, while
we represent vertices at the same distance with the same color (yellow for
h= 1, green for h= 2, and blue for h= 3).

Proposition 1 For all d, d′ ∈ {0, . . . ,N}:310

P(Dn = d′ |Dn−1 = d) =: q(d,d′) =


d/N if d′ = d−1

(N −d)/N if d′ = d+1

0 if |d′−d| 6= 1

(1)

Q= (q(d,d′))d,d′∈{0,...,N} is a (N + 1)× (N + 1) tridiagonal matrix where311

the main diagonal consists of zeros. The stationary distribution for Q is the312

binomial probability distribution B
(
N, 1

2
)

=
(
CdN

1
2N

)
d∈{0,...,N}

, where CdN =313 (N
d

)
= N !
d!(N−d)! is the binomial coefficient. It is the unique stationary distribu-314

tion for Q: a simple calculation points out the fact that (Dn)n≥0 is reversible315

with respect to B
(
N, 1

2
)
, then the uniqueness follows by the Ergodic Theorem.316

317

Anew, we have to deal with bipartiteness: the graph we are taking into318

account in this section is clearly bipartite, since we can separate its vertices319

into two subsets containing odd and even nodes respectively and no edge320

connects any vertices in the same subset. In order to overcome this problem321

we add N loops at each vertex xi ∈ HN which means that the new transition322

probability matrix for the (Dn) process is, for all d, d′ ∈ {0, . . . ,N}:323

P(Dn = d′ |Dn−1 = d) =: qL(d,d′) =



1/2 if d′ = d

d/(2N) if d′ = d−1

(N −d)/(2N) if d′ = d+1

0 if |d′−d| 6= 1

(2)

We denote by QL := (qL(d,d′))d,d′∈{0,...,N}.324
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Proposition 2 (Dn)n≥0 converges in law to a binomial random variable with
parameters N and 1/2. Explicitly:

(QL)d→B
(
N,

1
2

)
d

for n→+∞

Proof The proof follows directly observing that QL represents an irreducible
and, now, aperiodic MC, with the same stationary distribution as Q (see [55]
for a proof of the general result). ut

The spectral analysis of Q gives the following result.325

Theorem 2 For fixed N , the spectra of the transition probability matrix Q326

corresponding to the (Dn) process is composed by the same N + 1 distinct327

eigenvalues as the spectra of P, each with multiplicity 1.328

Proof The proof consists of a simple calculation of the eigenvalues of matrix
Q, which is easily done for N = 1,2. Then we reason by iteration. We can also
give the system we use for determining the eigenvectors. For fixed N let us
denote by λ±k the eigenvalue ±(N−2k)

N for 0≤ k ≤ bN/2c. We denote by x±k
the corresponding unknown eigenvector. Then we have the following matrix
equation:

Qx±k = λ±kx±k

Which is: 

x±k,2 = λ±kx±k,1

1
N x±k,1 + N−1

N x±k,3 = λ±kx±k,2

2
N x±k,2 + N−2

N x±k,4 = λ±kx±k,3

...

N−1
N x±k,N−1 + 1

N x±k,N+1 = λ±kx±k,N

x±k,N = λ±kx±k,N+1

ut

Remark 2 Using the classical results of S. N. Ethier and T. G. Kurtz [24]
it is possible to prove that, denoting by xN (t) the process xN (t) = DbNtc

N ,
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it converges in probability through x(t), solution of the differential equation
ẋ(t) =−2x(t)+1 on a finite time window:

∀ε > 0, ∀T > 0, P
(

sup
t∈[0,T ]

|xN (t)−x(t)|> ε

)
→ 0 for N →∞.

Remark 3 We can easily observe that x(t) rapidly converges to 1/2 for all329

x0 ∈ [0,1]. In particular if we start at x0 = 1/2 , we stay there for all t. That330

suggests that the (Dn) process, for N going to infinity, reaches a value of about331

N/2 exponentially fast, and then tends to remain there.332

From an heuristic viewpoint we can explain how we derived the above
equation. First of all, we take into account the following rescaled process:

xn :=Dn/N

As (Dn) ∈ {0, . . . ,N}, xn ∈ [0,1]. Denoting by qn(x) = P(xn = x) and using
Equation (1), we have:

qn+1(x) = (1−x)qn
(
x− 1

N

)
+xqn

(
x+ 1

N

)
Now we apply the Taylor theorem for N � 1:

qn+1(x) = (1−x)
(
qn(x)− 1

N
q′n(x)+o

(
1
N

))
+x
(
qn(x)+ 1

N
q′n(x)+o

(
1
N

))
From which we get:

qn+1(x)− qn(x) = 1
N

(x− (1−x))q′n(x)+o

(
1
N

)
Defining the process q̃(t,x) = qbNtc(x), with t= n

N , we obtain:

∂tq̃(t,x) = (2x−1)∂xq̃(t,x)+o

(
1
N

)
And consequently, the corresponding transport equation is:333

∂tq(t,x) = (2x−1)∂xq(t,x) (3)

The differential equation associated with Equation (3) (its characteristic equa-
tion) is:

ẋ(t) =−2x(t)+1

which has solution:
x(t) = 1

2 +
(
x0−

1
2

)
e−2t

It is also possible to derive a diffusion approximation by expanding the gen-334

erator at second order.335
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2.3 Hitting times336

In this section we give explicit formulas to compute the hitting time from node337

xi to xj : the expected number of steps before xj is visited, starting from xi.338

More precisely, we define by τ{xj} := inf{n ≥ 0 |Xn = xj}: we are interested339

in studying its expectation, Exi [τ{xj}]. The formula we gave in Section 2.3.1340

is directly obtained from the more general one given by L. Lovász in [49]: we341

recall it simply because we will need it later. On the other hand, the formula342

given in Section 2.3.2 is obtained from the (Dn) process and the procedure is343

inspired by those used in [47].344

2.3.1 Analysis of Ex0 [τ{x}] using the spectrum of P.345

Definition 8 LetH be the 2N×2N symmetric matrix having as (i, j)th entry:346

(H)ij =H(i, j) = Exi [τ{xj}] for all xi, xj ∈ HN . Clearly H(i, i) = 0 for all i.347

The N -regularity of the graph implies that:348

H(i, j) = 1+
∑

{k|h(i,k)=1}
PikH(k,j) = 1+ 1

N

∑
{k|h(i,k)=1}

H(k,j) for i 6= j (4)

To relate the hitting time with the spectrum, we first define F := J +PH−H,
where J is a 2N ×2N matrix whose entries are all 1. From Equation (4), it fol-
lows that F is a diagonal matrix, as (H)ij = (J)ij+(PH)ij for i 6= j. Moreover
F ′π = 1, where 1 = (1, . . . ,1)′, since

F ′π= (J +(P− I2N )H)′π= Jπ+H ′(P−I2N )′π= Jπ+H ′(P ′π−π) =Jπ= 1

Therefore, we deduce that F = 2NI2N and H is solution of349

(I2N −P)H = J −2NI2N (5)

350

Theorem 3 Given a SRW on HN , the hitting time from vertex i to j is given351

by:352

H(i, j) = 2N
2N∑
k=2

1
1−λk

(v2
kj−vkivkj), (6)

where λk is the kth eigenvalue of P and vki corresponds to the ith component353

of the kth eigenvector of P, as given in Section 2.1.354

Proof We can not directly solve equation (5), since matrix (I2N −P) is singu-
lar. The spectral decomposition theorem insures that R2N = ⊕2N

i=1Span{vi}.
On the subspace ⊕2N

i=2Span{vi}, (I2N −P) is invertible. At the same time, the
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right hand side in (5) reduces to a constant times the identity matrix when
restricted to this same subspace. Thus a possible candidate solving (5) is:

H̃ =−2N
2N∑
i=2

(1−λi)−1viv′i

Nevertheless, for every vector w ∈ R2N , H̃+1w′ is a solution of (5) as well.
Thus H can be unambiguously determined by imposing the condition over its
main diagonal: H(i, i) = 0 for all i ∈ {0, . . . ,2N}. ut

2.3.2 Analysis of Ex0 [τ{x}] from the Dn viewpoint.355

For the sake of simplicity, we denote H(D0) := Ex0 [τ{x}] as it depends only356

on the initial Hamming distance of X0 to x, D0.357

Remark 4 Due to (1), starting at point x0 with D0 = d, we have:P(D1 = d+1 |D0 = d) =: q(d,d+1) = (N −d)/N

P(D1 = d−1 |D0 = d) =: q(d,d−1) = d/N

We are now able to define a new recursive formula for (4), which will be more358

convenient if evaluated explicitly:359

H(d) = 1+ N −d
N

H(d+1)+ d

N
H(d−1) (7)

with boundary conditions:360

H(0) = 0 and H(1) = 2N −1 =
N∑
j=0

CjN −1 (8)

Taking the difference ∆(d) :=H(d)−H(d−1), we obtain:

∆(d+1) =H(d+1)−H(d) = d

N

(
∆(d+1)+∆(d)

)
−1

And finally:361

∆(d+1) = d

N −d
∆(d)− N

N −d
with ∆(1) =H(1) (9)

Then we can prove by iteration the following result:362

Theorem 4 Given a SRW on HN , the hitting time to cover a Hamming dis-363

tance equal to d, H(d) with 0≤ d≤N is obtained as:364

H(d) =
d−1∑
d=0

∑N−1−d
j=1 Cd+j

N +1
CdN−1

(10)
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Proof One have to prove that:365

∆(d+1) =
∑N−1−d
j=1 Cd+j

N +1
CdN−1

(11)

366

∆(d+1) = d ·∆(d)
N −d

− N

N −d
= d

N −d

(
(d−1) ·∆(d−1)
N − (d−1) − N

N − (d−1)

)
− N

N −d

= d(d−1) ·∆(d−1)
(N −d)(N − (d−1)) −N

(
d

(N −d)(N − (d−1)) + 1
N −d

)
(12)

Proceeding by iteration we obtain two terms, where the first one multiplies367

∆(1). From Equation (9) we know that ∆(1) = H(1) =
∑N
j=0C

j
N −1. A con-368

venient use of the properties of the factorial operator allows us to reach the369

following expression:370

(12) = d!(N −1−d)!
(N −1)!

 N∑
j=0

CjN −1

−N(d!(N −1−d)!
(N −1)! + d!(N −1−d)!

2!(N −2)! + · · ·

+ d!(N −1−d)!
(d−1)!(N − (d−1))! + d!(N −1−d)!

d!(N −d)!

)
=

= d!(N −1−d)!
(N −1)!

1+
N−1−d∑
j=1

N !
(d+ j)!(N − (d+ j))!

=
∑N−1−d
j=1 Cd+j

N +1
CdN−1

By using again (9), we can now easily express H(d) in the following way

H(d) =
d−1∑
d=0

∆(d+1) =
d−1∑
d=0

∑N−1−d
j=1 Cd+j

N +1
CdN−1

which can be evaluated for reasonable values of N . ut

We can immediately observe that H(d) is a monotonically increasing func-
tion. Moreover, H is concave. Indeed, thanks to Proposition 4 we can prove
that ∀d ∈ {1, . . . ,N −1}:

H(d)−H(d−1)≥H(d+1)−H(d)⇐⇒∆(d)≥∆(d+1)

Furthermore, we can evaluate the following limit:371

lim
N→∞

H(αN)
2N for α ∈]0,1]. (13)

372

Remark 5 The case α = 0 is trivial: if α = 0 this limit is equal to 0 since373

H(0) = 0.374
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Remark 6 Proposition 3 below, which evaluates (13), confirms the statement375

made in Remark 3: as N goes to infinity, (Dn) goes quickly to N/2 and then376

H(d) is always of order ∼ 2N irrespective of d 6= 0.377

Proposition 3 For all α ∈]0,1]:

lim
N→∞

H(αN)
2N = 1

Proof Since H is an increasing function and by using Equation (10) we have:

2N −1 =H(1)≤H(αN)≤H(N) =
N−1∑
d=0

1
CdN−1

+
N−1∑
d=0

N−1−d∑
j=1

Cd+j
N

CdN−1
=: S1 +S2

We examine the two terms of the last member separately.378

S1 ≤ 2+ 2
N −1 +(N −4) 2

(N −1)(N −2) (14)

We can prove it just by looking at Pascal’s triangle.379

380

Now, if we consider S2, we see that there is no contribution for d=N −1,
as the internal sum is zero valued. Moreover we have:

N−1−d∑
j=1

Cd+j
N ≤

N∑
j=0

CjN = 2N

And so:

S2 ≤ 2N
N−2∑
d=0

1
CdN−1

(14)
≤ 2N

(
1+ 2

N −1 +(N −4) 2
(N −1)(N −2)

)

By putting together all these inequalities and dividing by factor 2N we get
that:

1− 1
2N ≤

H(αN)
2N ≤ 1+ 2

N −1 + 2(N −4)
(N −1)(N −2) + 1

2N

(
2+ 2

N −1 + 2(N −4)
(N −1)(N −2)

)
The result comes directly by applying the squeeze theorem. ut

This result can be extended to a SRW on a generic state-space SN , with381

|S| = s. More precisely, one can prove in a similar way as we did for HN the382

following result:383

Proposition 4 The order of magnitude of the hitting time for a switch-type384

mutational model on the state-space SN , with |S|= s, is sN , for N big enough.385

This is the consequence of Theorem 5 and Proposition 5 below.386



Random walks on binary strings applied to the somatic hypermutation of B-cells 17

Theorem 5 Given a SRW on SN , the hitting time to cover a Hamming dis-387

tance equal to d, Hs(d) with 0≤ d≤N is obtained as:388

Hs(d) =
d−1∑
d=0

∑N
j=d+1C

j
N (s−1)j

CdN−1(s−1)d
(15)

Proposition 5 For all α ∈]0,1]:

lim
N→∞

Hs(αN)
sN

= 1

Remark 7 In the current Section and in Section 3 we evaluate the expected
hitting time to reach a specific vertex of HN . From a biological viewpoint
this means to reach the optimal B-cell trait against the presented antigen.
The single-peak landscape assumption has already been discussed in other
mathematical models of GC reaction [66,39,38]. Looking for a perfect comple-
mentarity of the whole BCR to the target profile might not be really biolog-
ically significant : the matching of entire strings means designing a receptor
for each possible antigen, this is not reasonable considering repertoire sizes.
Therefore, we evaluate the hitting time of a set of vertices instead. This im-
plies, of course, a speed-up of the time-scales (see Table 1 for instance). Let
Ar := {xi ∈ HN |h(xi,x) ≤ r} be the sphere of radius r in the graph metric,
centered in the target vertex x, and considering P as transition probability
matrix. We are interested in explicitly evaluate the mean hitting time to enter
Ar. We consider the distances process defined in Section 2.2, hence the graph
underlined by matrix Q (Proposition 1). The sphere Ar can be denoted as:

Ar := {j ∈ {0, . . . ,N}|j ≤ r}

We denote by Hi(r) the expected time to reach Ar starting from initial Ham-389

ming distance i. By using Equation (1), we obtain:390 Hi(r) = 0 if i≤ r

Hi(r) = 1+ i

N
Hi−1(r)+ N − i

N
Hi+1(r) if i > r

(16)

Let us define ∆r(i) as the difference between Hi(r) and Hi−1(r):

∆r(i) :=Hi(r)−Hi−1(r)

Therefore:391

∆r(i) = 1+ i

N
Hi−1(r)+ N − i

N
Hi+1(r)−Hi−1(r)

= 1+ N − i
N

(Hi+1(r)−Hi−1(r))

= 1+ N − i
N

(∆r(i+1)+∆r(i))
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And finally:392

∆r(i) = N − i
i

∆r(i+1)+ N

i
(17)

With the condition:393

∆r(N) :=HN (r)−HN−1(r) = 1+HN−1(r)−HN−1(r) = 1 (18)

394

Theorem 6 For all i > r≥ 0 the mean hitting time to reach Ar starting from395

initial Hamming distance i from x is given by:396

Hi(r) =
i∑

s=r+1

∑N−s
j=0 CjN

CN−sN−1
(19)

Table 1: Average expected times to reach the sphere Ar of radius r centered
in x, for different values of r. Simulations correspond to N = 10 and an initial
Hamming distance h(X0,x) = 10. Table 1 shows results obtained over 20480
simulations. We denote by |Ar| the number of vertices of HN included in Ar.
H10(r) corresponds to the theoretical value obtained by Equation (19). We
denote by τ̂{x}n the average value obtained over n = 20480 simulations and
by σ̂n its corresponding estimated standard deviation.

.

r |Ar| H10(r) τ̂{x}n
σ̂n√
n

0 1 1186.540 1184.499 8.1736

1 11 163.540 163.747 1.064

2 56 50.984 51.729 0.298

3 176 24.095 24.118 0.116

Remark 8 One can demonstrate that Hi(0) = H(i) as defined by Equation397

(10).398

Proof Considering Equations (17) and (18) we can demonstrate by iteration399

that ∀k ∈ {0, . . . ,N −1}:400

∆r(N −k) = 1
CkN−1

k∑
j=0

CjN (20)

The result follows by observing:401

Hi(r) =
i∑

s=r+1
∆r(s) =

i∑
s=r+1

∆r(N − (N −s)) (21)

ut
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We simulate the average expected time to reach a sphere of radius r cen-402

tered in the vertex x, for different values of r. Table 1 shows the results ob-403

tained over more than 20000 simulations. We clearly see that the average404

hitting time decreases significantly if we consider bigger radius r, as expected.405

406

3 More mutational models: how does the structure of the407

hypercube change?408

In this section, we explore other mutation rules, which change the internal409

graph structure of the hypercube, therefore the dynamics of the RW and the410

characteristic time-scales of the exploration of the state-space.411

3.1 Study of various mutation rules412

We propose and study four mutational rules:413

– a model of permutation of two bits;414

– a model of switch of k-length strings;415

– a model of switch of 1 or 2-length strings depending on the Hamming416

distance to a fixed node representing the antigen target cell;417

– multiple point mutations models.418

3.1.1 The exchange mutation model.419

We consider a model where given an initial B-cell representing string, each420

mutation step consists in permuting two randomly chosen bits.421

Definition 9 Let Xn ∈ {0,1}N be the BCR at step n. Let i ∈ {1, . . . ,N},
j ∈ {1, . . . ,N} \ {i} two randomly chosen indexes. We can suppose, without
loss of generality, that j > i:

Xn+1 = (Xn,1, . . . ,Xn,i−1,Xn,j ,Xn,i+1, . . . ,Xn,j−1,Xn,i,Xn,j+1, . . . ,Xn,N )

With this mutation rule, we loose a very important property : the connec-422

tivity of the graph. We denote by H(s) ⊂ {0,1}N the set containing the CsN423

vertices having s 1 in their strings. The state-space {0,1}N is divided into424

N +1 connected components: H(s), 0≤ s≤N .425

Proposition 6 There are exactly N(N−1)
2 (non-oriented) edges ending at each426

vertex counting the possible loops. Each node x ∈ H(s) has exactly
(N−s)2−(N−s2)

2427

loops.428

Corollary 2 P(Xn = xj |Xn−1 = xj) = (N−s)2−(N−s2)
N(N−1) . In particular the prob-429

ability of remaining on the same node is 1 if s= 0 or s=N .430
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Proof (Proposition 6) The first statement is obtained by simple combinatory
arguments. Let us consider x ∈ H(s) with 0≤ s≤N : it is composed by exactly
s ones and N−s zeros. For the sake of clarity let us consider that {0, . . . ,N}=
I tJ so that |I|= s, |J |=N −s and xi = 1 ∀ i ∈ I, xj = 0 ∀j ∈ J . We obtain
a loop each time we choose both random indices either in I (C2

s possibilities)
or in J (C2

N−s possibilities). Then the total number of loops is obtained by
the sum of these two cases, i.e. (N−s)2−(N−s2)

2 . ut

We can also describe qualitatively the behavior of the (Dn) process refer-431

ring to this current model. As a general principle, we have that Dn =Dn−1 +i,432

i ∈ {0,±2}. Therefore, clearly P(Dn = d′|Dn−1 = d) = 0 if |d′ − d| > 2 or433

|d′−d|= 1. Moreover, we have maximal and minimal values of Dn depending434

on s0 and s so that X0 ∈ H(s0) and x ∈ H(s). Indeed:435

Proposition 7 Given x ∈ H(s) and X0 ∈ H(s0), then ∀n≥ 0:
|s−s0| ≤Dn ≤ s+s0 if s+s0 ≤N

|s−s0| ≤Dn ≤ (N −s)+(N −s0) if s+s0 >N

Proof The proof follows immediately by counting how many possibilities there
are to arrange s ones and N −s zeros in a N -length string. ut

Remark 9 From Proposition 7 one can see that if s= s0 =: s and 2s 6=N then:

0≤Dn <N

3.1.2 Class switch of k-length strings.436

Let X0 = (X0,1, . . . ,X0,N ) ∈ {0,1}N be the B-cell entering the somatic hyper-437

mutation process. At each mutation step we switch the class of k consecutive438

amino-acids.439

Definition 10 Let Xn ∈ {0,1}N be the BCR at step n. Let i ∈ {1, . . . ,N −440

(k− 1)} be a randomly chosen index. Then Xn+1 := (Xn,1, . . . ,Xn,i−1,1−441

Xn,i, . . . ,1−Xn,i+k−1,Xn,i+k, . . . ,Xn,N ).442

Remark 10 If k = 1 we are in the case of a SRW on HN .443

If k =N we stay on a 2-length cycle. Indeed we have that Xl = X0 for l even444

and Xl = 1−X0 for l odd. For this reason the case k = N does not appear445

interesting neither from a mathematical nor from a biological point of view.446

Here below we give some basic properties of this RW, that one can easily447

prove by simple combinatory arguments.448
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Proposition 8 Each vertex has exactly N − (k− 1) neighbors and no loops.
Therefore, for all xi, xj in {0,1}N :

P(Xn = xj |Xn−1 = xi) =: pk(i, j) =


1

N − (k−1) if xj ∼ xi

0 otherwise

Remark 11 As regards to this current model, given xi, xj ∈ {0,1}N , we have:449

xi ∼ xj⇔ h(xi,xj) = k and the k different elements have consecutive indexes.450

Thus, Pk = (pk(xi,xj))xi,xj∈Hk
is the 2N ×2N transition probability ma-451

trix.452

453

For fixed k ∈ {1, . . . ,N} the graph underlying the RW corresponding to454

the model of class switch of k-length strings has exactly 2k−1 connected com-455

ponents, each one composed of 2N−(k−1) elements.456

Because of the non connectivity of the graph, we can focus on the connected457

component to which X0 belongs and find out the properties of our RW on458

it. For fixed N and k and dealing with each connected component separately,459

we are describing a SRW on a (N − (k−1))-hypercube. Henceforth we obtain460

2k−1 distinct hypercube-type structures of the same size.461

462

We can limit our study to the connected component containing X0, which463

is, up to a change of variables, a (N − (k− 1))-dimensional hypercube. Let464

Pk be the restriction of Pk to this connected component. If we conveniently465

order the 2N−(k−1) distinct vertices, than Pk = PN−(k−1). At this stage, it is466

possible to translate all classical results we know about the SRW onHn, for n=467

N− (k−1), on each connected component of this current graph, remembering468

the definition of neighborhood given in Remark 11.469

3.1.3 Class switch of 1 or 2-length strings depending on the Hamming470

distance to x.471

The models we described in Sections 3.1.1 and 3.1.2 present an important lim-472

itation: the underlying graphs are non-connected. Due to our choice of affinity,473

a model which does not enable to explore the whole state-space is not very474

relevant. Indeed, if the graph is non-connected and the target chain does not475

belong to the connected component containing the B-cell which first enters the476

somatic hypermutation process, then we never reach the target configuration.477

From a biological viewpoint, it may be more relevant to consider a smoother478

affinity model, in which the BCR representing string reaches the target when479

most, but not all, bits are similar. In this case, considering a non-connected480

graph, is not necessarily a problem.481

482



22 Irene Balelli, Vuk Milišić, Gilles Wainrib

Another way to overcome the problem of non-connectivity is to consider a
model which allows to vary the length of the strings submitted to switch-type
mutations. Moreover, it is biologically credible that during the GC process B-
cells can modify their mutation rate, making it somehow proportional to their
affinity to the antigen [11,8,31]. Indeed, B-cells compete for different rescue
signals (from Helper T-cells or FDCs), and that determines their fate: undergo
further mutations or differentiate into plasma cells or memory cells ([1], Chap-
ters 7). Here we suppose that the mutational rate is inversely proportional to
the affinity: the greater the affinity, the lower is the mutational rate. We found
the hypothesis that the regulation of the hypermutation process is dependent
on receptor affinity also in other works, as [16,2], where the authors proposed
computational implementations of the clonal selection principle to design ge-
netic optimization algorithms, taking into account AAM during an adaptive
immune response. In terms of our mathematical model, we can translate it by
making the size k of the strings which can mutate to be directly proportional
to the Hamming distance to x at each mutation step:

kn = f(Dn), with f : {0, . . . ,N}→ {0, . . . ,N} being an increasing function.

Despite many choices of the function f are possible, hereinafter we consider a483

very elementary case, where f is a step function on two intervals.484

Definition 11 Let Xn ∈ {0,1}N be the BCR at step n. We denote by kn:

kn := f (Dn) =

1 if Dn ≤ 1

2 if Dn > 1

Let i ∈ {1, . . . ,N − (kn−1)} be a randomly chosen index. Then:485

Xn+1 := (Xn,1, . . . ,Xn,i−1,1−Xn,i, . . . ,1−Xn,i+kn−1,Xn,i+kn , . . . ,Xn,N ).486

This model is an interesting and simple way to generalize the basic mu-487

tational model without losing the property of connectivity of the graph. The488

addition of this flexibility was not only motivated by biological reasons, but we489

also expect that this modification decreases the hitting time to a fixed node.490

This is actually true: the hitting time is halved compared to the basic model491

(at least for N big enough). We will also show that the stationary distribution492

is concentrated on a half part of the hypercube, the one to whom x belongs.493

Remark 12 For fixed N and k = 2 the graph is divided into two connected494

components composed of 2N−1 vertices. Two nodes belonging to the same495

connected component have a Hamming distance of 2t with 0≤ t≤ bN/2c. On496

the other hand, two vertices belonging to different connected components have497

a Hamming distance of (2t+1) with 0≤ t≤ b(N −1)/2c.498

In order to analyze this process, we have to distinguish two cases. For fixed499

N and x, the process we obtain:500
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case 1: D0 = 2t, t > 0. X0 belongs to the same connected component as x,501

so we are working on a (N−1)-dimensional hypercube, following the model502

of class switch of 2-length strings. we stay in this connected component all503

over the process till we arrive at x, as it is impossible to obtain a Hamming504

distance equal to 1.505

case 2: D0 = 2t+ 1, t > 0. We necessarily take k = 2 and Remark 12 im-506

plies that X0 belongs to a different connected component than x. In order507

to reach the connected component containing x, we have to visit a node x∗508

so that h(x∗,x) = 1, and |{x∗ |h(x∗,x) = 1}|=N . Then, if D0 = 1 we are509

allowed to change only one element of the B-cell representing string. With510

probability 1/N we arrive directly at x and with probability (N−1)/N we511

obtain D1 = 2. Then we go back to case 1.512

Proposition 9 The graph corresponding to the current model is divided into513

two connected components: H(1−2)
N and its complementary HN

(1−2), s.t. x ∈514

HN
(1−2). HN

(1−2) is accessible from H(1−2)
N , but not conversely. Vertices be-515

longing to HN
(1−2) are positive recurrent and vertices belonging to H(1−2)

N are516

transient.517

Proof The existence of two connected components depends on the use of the
model of switch of 2-length strings. Indeed the structure of the graph we are
considering here essentially corresponds to that of the graph underlying the
model of switch of 2-length strings, up to the addition of some oriented edges
from H(1−2)

N to HN
(1−2). As long as we stay in HN

(1−2) or H(1−2)
N we are just

allowed to switch 2-length strings. Moreover, we have already observed that
when we are in HN

(1−2) we can’t exit, while when we are in H(1−2)
N we can

reach HN
(1−2) by visiting one among the N nodes having Hamming distance

1 from x, and that happens in a finite number of steps. Therefore:
P(τxi <∞) = 1 for all xi ∈ HN

(1−2) ⇒ xi is recurrent

P(τxi <∞)< 1 for all xi ∈ H(1−2)
N ⇒ xi is transient

In particular, vertices belonging to HN
(1−2) are positive recurrent as the chain

is irreducible on HN
(1−2) and |HN

(1−2)|<∞. ut
The following known result about stochastic processes, justifies Corollary518

3 below.519

Theorem 7 Let (Xn)n≥0 be a Markov chain on a state-space S and xi ∈ S
be positive recurrent. Let mi be the mean return time: mi = E(τ{xi} |X0 = xi).
Denoting by Sr ⊆ S the positive recurrent connected component to which xi
belongs, then a stationary distribution π is given by:

πi =mi ∀xi ∈ Sr
πi = 0 ∀xi ∈ S \Sr
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Theorem 7 is proven by considering the relations among recurrent and520

transient classes, stationary distributions and return time (see [55] for some521

more details).522

Corollary 3 The stationary distribution for the RW we describe in the present523

section, π, is given by:524

πi =


1

2N−1 if xi ∈ HN
(1−2)

0 if xi ∈ H(1−2)
N

(22)

Corollary 3 is a consequence of Theorem 7 and the study of the SRW on525

an N -dimensional hypercube.526

3.1.4 Allowing 1 to k mutations527

In this section we analyze how the N -dimensional hypercube changes if we528

allow 1 to k independent switch-type mutations at each step, with k fixed,529

k ≤N .530

Definition 12 Let Xn ∈ {0,1}N be the BCR at step n. Let k be an integer,531

1 ≤ k ≤ N and ∀ i, 1 ≤ i ≤ k, ai := P(i independent switch-type mutations).532

Then with probability ai, Xn+1 is obtained from Xn by repeating i times,533

independently, the process described by Definition 5.534

By definition, the corresponding transition probability matrix is a con-535

vex combination of Pi, for 1 ≤ i ≤ k (Pi is the transition probability matrix536

corresponding to i iterations of the process of a single bit mutation):537

k∑
i=1

aiPi, with
k∑
i=1

ai = 1. (23)

Definition 13 Let us fix ai = 1/k ∀ i. We denote by P(k) := 1/k
∑k
i=1Pi.538

Accordingly, we denote the graph underlying this RW H(k)
N .539

Remark 13 Since the mutations are assumed to be independent, then k rep-540

resents the maximum Hamming distance the process can cover in a single541

mutation step. Thanks to the independence of each single mutation, two or542

more mutations may nullify their respective action: in particular for k ≥ 2543

there is a non-zero probability of remaining at the same position. From a bi-544

ological point of view, this behavior can be interpreted as the possibility of545

doing mutations which have no effect on the BCR structure.546
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We can now evaluate the eigenvalues of P(k), λ(k)
j by using the eigenvalues547

λj of P (Section 2.1). Due to the fact that all Pi commute with each other,548

the eigenvalues are given by:549

λ
(k)
j = 1

k

k∑
i=1

λij (24)

and P(k) and P have the same eigenvectors. We give explicitly the expression550

of all λ(k)
i and concentrate on the second largest eigenvalue, λ(k)

2 .551

Proposition 10 The N +1 distinct eigenvalues of matrix P(k) are:552

– λ
(k)
1 = 1 ;553

– λ
(k)
j = λj

k
·
1−λkj
1−λj

for 2≤ j ≤N ;554

– λ
(k)
N+1 = 1

2k

(
(−1)k−1

)
=

0 if k is even

-1/k if k is odd
555

The multiplicity of λ(k)
j is

( N
j−1
)
, 1≤ j ≤N +1556

Proof This result comes directly from the evaluation of Equation (24), for the
already known values of all λj (Corollary 1). ut

Then, in particular, the second largest eigenvalue of P(k) is:557

λ
(k)
2 = N −2

2k

(
1−
(

1− 2
N

)k)
(25)

Remark 14 For all k ≥ 2, λ2 > λ
(k)
2 . First of all, we can observe that λ(k)

2
decreases for increasing k. Therefore:

λ2−λ(k)
2 ≥ λ2−λ(2)

2 = N −2
4N2 (4N −N2 +(N −2)2) = N −2

N2 > 0

For N � 1, the series expansion of λ(k)
2 gives us:558

λ
(k)
2 = N −2

2k

(
1−
(

1− 2k
N

+ 2k(k−1)
N2 +O

(
1
N3

)))
= N −2

N
− (N −2)(k−1)

N2 +O
(

1
N2

)
We can observe how the spectral gap changes. If we consider the series559

expansion of
(
1− 2

N

)k for N →∞, we get:560

λ
(k)
1 −λ(k)

2 = 2
N

+ (N −2)(k−1)
N2 +O

(
1
N2

)
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It can be interesting to choose k as a function of N . Let us consider, for561

example, k = αN , with 0< α≤ 1. In this case, we have:562

λ
(αN)
2 = N −2

2αN

(
1−
(

1− 2
N

)αN)
for N →∞= N −2

2αN

(
1−
(
e−2α+O

(
1
N

)))
=

(N −2)
(
1−e−2α)

2αN +O
(

1
N

)
→ 1−e−2α

2α for N →∞

We can observe that 1−e−2α

2α =: λ(αN)
2 decreases when α increases. More-563

over:564

– λ
(αN)
2 → 1 for α→ 0, which means that the spectral gap, 1−λ(αN)

2 con-565

verges to zero for N →∞ and α→ 0;566

– If α= 1 then λ(N)
2 = 1

2 −
1

2e2 . Therefore, the spectral gap is 1
2 + 1

2e2567

The spectral gap indicates how quickly a RW converges to its stationary568

distribution. As expected, if α→ 0 then the spectral gap gets close to 0. On the569

other hand for all α > 0 the spectral gap tends to a strictly positive quantity,570

while the spectral gap corresponding to the case of the basic model converges571

to zero for N →∞. In particular, when α = 1 (i.e. we are considering the572

optimal case, in which we are allowed to do among 1 and N mutations at each573

mutation step), the spectral gap, 1
2 + 1

2e2 , is significantly bigger than the one574

obtained for the basic model, 2/N .575

3.2 Comparison of hitting times576

In this section we compare hitting times referring to some relevant mutational577

models we have already presented. We do not consider models that entail578

non-connected graphs (the model of class switch of k-length strings and the579

exchange mutation model): this choice is motivated by the discussion from the580

beginning of Section 3.1.3. In Table 2 we collect most important characteristics581

of these RWs on {0,1}N : the hitting time and its approximation for big N ,582

that we will discuss in this current section, the stationary distribution and the583

value of the second larger eigenvalue when known.584

3.2.1 Class switch of 1 or 2-length strings depending on the Hamming585

distance to x.586

We use results obtained in Section 2 for the (Dn) process concerning the587

SRW on the N -dimensional hypercube and we apply them to this model.588

Here we shall introduce another definition of the distance, which is adapted589

to a connected component HN,2 ⊂ {0,1}N , where HN,2 denotes one of the590
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Table 2: Table 2 summarizes the main characteristics of most random processes
we introduce and analyze in Sections 2 and 3.

Model Hitting time Stationary
distribution

Second biggest
eigenvalue

Basic
model

H(d) =
∑d−1

d=0

∑N−1−d

j=1
C

d+j
N

+1

Cd
N−1

∼ 2N π 1− 2
N

Switch 1-2 ∼ 2N−1 π
∣∣
HN

(1−2) -

Allowing 1
to k muta-
tions

T
(k)
N (d) =

∑2N

l=2µ
(k)
l

−
1

2NCd
N

∑2N

l=2µ
(k)
l
RN (l,d)

π N−2
2k

(
1−
(
N−2
N

)k)

two parts in which {0,1}N is divided applying the model of class switch of591

2-length strings (Section 3.1.2). We recall that HN,2 is a (N −1)-dimensional592

hypercube, and that the graph underlying the model of class switch of 1 or593

2-length strings corresponds essentially to the graph obtained with the model594

of switch of 2-length strings, up to the addition of some oriented edges from595

H(1−2)
N to HN

(1−2).596

Definition 14 For all xi, xj ∈ HN,2 we denote by h(2)(xi,xj) the number597

of edges in a shortest path connecting them. Simultaneously we denote by598

D
(2)
n = h(2)(Xn,x), D(2)

n ∈ {0, . . . ,N −1} ∀n≥ 0.599

Considering the process (D(2)
n )n≥0, all results stated in Section 2 hold600

true. Furthermore, let us denote by E(2)
xi [τA] the expected number of steps601

before set A ∈ HN,2 is visited starting at xi ∈ HN,2 and following the model602

of switch of 2-length strings. Then, we also denote by H(2)
N−1(d) = E(2)

x [τ{x}]603

where d= h(2)(x,x).604

Remark 15 Clearly if D0 = 2t and t > 0, which means that X0 and x belong to605

the same connected component in the model of class switch of 2-length strings,606

then the mean hitting time for the current model will be of the order of a half607

the mean hitting time for the basic model. Indeed, since we are considering608

here a (N −1)-dimensional hypercube instead of a N -dimensional one.609

The result below, which is an immediate application of the Ergodic Theo-610

rem, will help us understand better the general behavior of this mean hitting611

time:612

Proposition 11 Let (Xn)n≥0 be a SRW on HN . We denote by T+
d := inf{n≥613

1 |Dn = d} and Td := inf{n≥ 0 |Dn = d}. Then:614

ED0=d[T+
d ] = 2N

CdN
(26)
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Proof The proof is obtained by applying the Ergodic Theorem to the (Dn)
process and its stationary distribution, the binomial probability distribution.

ut

For the discussion we made in Section 2.2 and, in particular, Remark 3 we615

can conclude that for N � 1 the order of magnitude of the time we spend to616

reach the N nodes at Hamming distance 1 from x is:617

ED0=d[T1]∼ 2N

N
(27)

Then we can claim the following result, which comes directly from Equation618

(27):619

Proposition 12 Let us suppose that D0 = 2t∗+1 with 0< t∗ ≤ b(N −1)/2c.
Then for N � 1 we have:

E(2)
D0=d[T1]∼ 2N−1

N

Finally:620

Proposition 13 We denote by E(1−2)
x0 [τ{x}] the mean hitting time to reach x

starting from x0 and referring to the mutation model of class switch of 1 or 2
length strings. Then, for N � 1 we have:

E(1−2)
x0 [τ{x}]∼

1
2Ex0 [τ{x}] with Ex0 [τ{x}]∼ 2N ,

where Ex0 [τ{x}] is the hitting time from x0 to x according to the basic model,621

as defined in Section 2.3.622

Proof First of all we observe that the last statement is a direct consequence
of Proposition 3. As far as the first statement is concerned, we observe that
according to the model we are analyzing here and due to Proposition 12, for
N � 1 the order of magnitude of E(1−2)

x0 [τ{x}] is:

E(1−2)
x0 [τ{x}]∼

1
2

(
2N−1

N
+2N−1

)
+ 1

22N−1

where the first term corresponds to the case x0 /∈HN
(1−2) and the second one

corresponds to the opposite case (as we choose randomly the first vertex, x0,
we have probability 1/2 that it belongs to each part of the hypercube). For
the last term we used again Proposition 3 applied to a (N − 1)-dimensional
hypercube and according to the (D(2)

n ) process and the corresponding hitting
time H(2)

N−1(d). The result follows. ut
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Table 3: Average expected times from [0, . . . ,0] to [1, . . . ,1], comparing the basic
mutational model and the model of class switch of 1 or 2 length strings. Here
we denote by τ̂{x}n the average value obtained over n simulations and by σ̂n
its corresponding estimated standard deviation.

Mutational model N n τ̂{x}n
σ̂n√
n

Basic 10 5000 1188.7996 16.2930

11 5000 2312.5648 32.1073

Switch 1-2 10 5000 602.8124 8.4773

11 5000 1181.5174 16.9023

Remark 16 We simulated the basic mutational model and the model of class623

switch of 1 or 2 length strings in order to compare the hitting times from624

x0 := [0, . . . ,0] to x := [1, . . . ,1] for both mutational models. We consider the625

case N = 10 and N = 11 in order to have an example in which the process626

starts from HN
(1−2) and from H(1−2)

N respectively. Indeed, if N = 10 the627

process starts from the connected component to which x belongs, while when628

N = 11 we have to reach one of the N nodes having distance 1 from x to reach629

the connected component containing x. The average resulting hitting times630

are summarized in Table 3.631

3.2.2 Allowing 1 to k mutations.632

In this section we study the mean hitting time to cover a fixed Hamming
distance d. First of all, we give the expression of the hitting time from node i
to node j using the spectra. This formula is deduced by the more general one
given in [49], in the case of regular graphs (the graph obtained by a convex
combination of matrices Pi is a regular multigraph). We refer to the notations
given in Section 2 for the eigenvectors of matrix P: vs = (vs1, . . . ,vs2N ) is
the normalized eigenvector of P corresponding to λs. These eigenvectors are
the columns of matrix QN (Section 2.1), and each component vsi corresponds
to node i, as they were organized while constructing the adjacency matrix.
Denoting by T (i, j) the hitting time from node i to node j in H(k)

N , we obtain
the following expression:

T (i, j) = 2N
2N∑
l=2

1
1−λ(k)

l

(v2
lj−vlivlj),

which can be written using column vectors of ZN .

T (i, j) =
2N∑
l=2

1
1−λ(k)

l

(z2
lj−zlizlj)
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We are interested in studying the equation below:633

T
(k)
N (d) := 1

2NCdN

∑
h(i,j)=d

T (i, j) = 1
2NCdN

2N∑
l=2

1
1−λ(k)

l

∑
h(i,j)=d

(z2
lj−zlizlj),

(28)
where 2NCdN corresponds to the number of couples of nodes of {0,1}N having634

Hamming distance d.635

636

First of all we can observe that for all l and for all j, z2
lj = 1. Moreover,637

in order to simplify notations, we denote µ(k)
l := (1−λ(k)

l )−1. Also, we denote638

RN (l,d) :=
∑

h(i,j)=d
zlizlj . Finally we obtain:639

Proposition 14

T
(k)
N (d) =

2N∑
l=2

µ
(k)
l −

1
2NCdN

2N∑
l=2

µ
(k)
l RN (l,d) (29)

All the elements of this equation are known, except RN (l,d). Let us consider640

the 2N ×(N+1) matrix RN = (RN (l,d)), with 1≤ l≤ 2N and 0≤ d≤N . One641

can prove by iteration:642

Proposition 15
RN = ZN ·LN (30)

where ZN := (z1, . . . ,z2N ) is recursively obtained from ZN−1 (Section 2.1),
and

L1 = 2I2, In being the n-dimensional identity matrix

LN =

 2 ·LN−1 02N−1

02N−1 2 ·LN−1

 , 0n being the n-length zero column vector

3.2.3 Numerical simulations643

In Figure 3 we plot some examples of the dependence of T (k)
N (d) on d and k644

for different values of N .645

646

Figure 3 (a) shows that for increasing k, T (k)
N (d) varies on a smaller interval:647

[1023,1186.5] for k= 1, [1028.1,1068.6] for k= 5 and [1025.6,1044.8] for k= 10.648

It is intuitive to understand this fact: the hitting time depends less from the649

initial Hamming distance if we allow more mutations at the same mutational650

step. Indeed, we can actually visit more distant nodes since the first steps, so651

the initial Hamming distance has a smaller influence on the result. Figures 3652
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(b) and 3 (c) show the dependence of T (k)
N (d) on k. We obtain the best result653

for the biggest k, except in the case d= 1 (as already shown by Figure 3 (a)).654

Curves corresponding to the case d= 5 and d= 10 are really close: we can eval-655

uate their minimal and maximal values, which are respectively 1043.25 and656

1177.60 for d = 5; 1044.82 and 1186.54 for d = 10. This fact highlights once657

again that if d > 1, the initial Hamming distance poorly influences the value658

of the hitting time. The case d= 1 shows surprisingly that the hitting time is659

not necessarily a monotone function of k. Figure 3 (c) allows to focus to this660

behavior and better understand its causes. Indeed, as N is quite small, this661

figure shows more clearly the oscillating behavior of T (k)
N (d) while studying its662

dependence on k: for even values of k, T (k)
5 (1) increases, while for odd values663

of k it decreases. Intuitively, as the distance we want to cover is d = 1, if we664

allow to do 2 mutations instead of simply one, then we have a high probability665

to go further since the beginning of the process. Let us now look to Equation666

(28) and, in particular to the factor:
∑2N
l=2(1−λ(k)

l )−1. We can understand667

the phenomenon plotted in Figure 3 (c) by looking at Proposition 10. If k668

is odd and little enough then the last eigenvalue, which is negative (equal to669

−1/k), has an important negative influence over the value of T (k)
N (d). Clearly,670

this fact has a substantial effect only if N and k are little enough, otherwise671

it will be compensated by the effect of all other eigenvalues.672

673

One may wonder what would be the best choice for the coefficients ai (De-674

finition 12), 1 ≤ i ≤ k, so that T (k)
N (d) is minimized for a fixed k. We have675

to minimize the convex combination
∑k
i=1 aiλ

i
l. The answer is quite evident:676

if k > 2 the minimum is obtained by taking all ai = 0 and ak∗ = 1, where677

k∗= 2b(k+1)/2c−1. Consequently, the best choice for the transition probabil-678

ity matrix is Pk∗ . The fact that we need to consider the greater odd component679

has also a more intuitive explanation. Indeed if we consider the RW given by680

P2t, we will be trapped in one of the connected-components of the graph due681

to the bipartite structure of the hypercube. One can remark that the graph682

corresponding to P2t is non-connected ∀ t > 0. Therefore, we will not be able to683

reach those nodes having a different parity of 1s in their string, referring to X0.684

685

In Figures 3 (d), 3 (e), 3 (f) and 3 (g) we plotted together the values of686

hitting times to cover a Hamming distance d for different values of N , k, and687

d, comparing the process given by P(k) and the one corresponding to Pk∗ .688

This gives more evidence of the fact that the second one is the optimal one.689

It is interesting to look at the case in which d is fixed and we let k vary.690

For k = 1 both processes gave the same result as P1∗ = P = P(1). Moreover,691

for k = 2 the process P(2) is clearly the faster one: we recall that defining692

Pk∗ we consider the greater odd k, and then P2∗ = P, while the process P(2)
693

allows to do 1 or 2 mutations at each mutation step. Then Pk∗ is the best694

choice among all possible convex combinations of Pi iff k > 2. In Figures 3695

(d) and 3 (e) we observe the oscillating behavior of T k
∗

N (d). That depends696
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Figure 3: (a) Dependence of T (k)
N (d) on d for N = 10 and k = 1, 5 or 10.

(b) Dependence of T (k)
N (d) on k for N = 10 and different values of d. (c)

Dependence of T (k)
5 (1) on k. (d, e) Dependence of T (k)

N (d) on d for different
values of both N and k. Values obtained by using as transition probability
matrices P(k) and Pk∗ respectively are compared. (f, g) Dependence of T (k)

N (d)
on k for different values of both N and d. Again, cases corresponding to P(k)

and Pk∗ are compared.
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on the structure of RN , considering that
∑2N−1
l=2 RN (l,d) = 0 for d odd and697 ∑2N−1

l=2 RN (l,d) =−2(2NCdN ) for d even. One can get convinced of this fact by698

explicitly computing T k
∗

N (d) for N = 3. Moreover simulations show that this699

behavior is softened for increasing d, and that T k
∗

N (N−1)>T k
∗

N (N). This fact700

is confirmed by simulations on the real process. Finally, Figures 3 (f) and 3 (g)701

clearly show that for k = 2 the process given by P(k) allows to cover quickly702

a fixed Hamming distance. As expected, the best hitting time is obtained for703

k =N , and for increasing N and k the value of this hitting time has a smaller704

variation.705

706

Table 4: An example of comparison between the theoretical and experimental

values of T (5)
5 (4) for P(5).

̂
T

(5)
5 (4)n denotes the average value obtained over n

simulations and σ̂n its corresponding estimated standard deviation.

Transition probability matrix N d k n T
(5)
5 (4)

̂
T

(5)
5 (4)n

σ̂n√
n

P(k) 5 4 5 480000 34.62 34.67 0.05

We can test all these observations by simulating the real process for both707

transition probability matrices, Pk∗ and P(k). Results obtained are consistent708

with our theoretical analysis. In order to give an idea of experimental values709

obtained by testing the process, in Table 4 we compare the theoretical value of710

T
(k)
N (d) corresponding to P(k), and the experimental value with its precision,711

for N = 5, k = 5 and d= 4.712

4 Modeling issues713

The mathematical framework described in previous sections can be used to714

model mutations characteristic of SHM. In Sections 4.1 and 4.2 we give some715

more details about GCs and the binding between B-cells and antigens. There-716

fore, in Section 4.3 we set the modeling assumptions which justify to math-717

ematically describe SHMs as RWs on binary strings. Of course, this is a not718

exhaustive approximation. Hence, some limitations are discussed in Section719

4.4 and some propositions for further developments are given as well.720

4.1 The germinal center reaction721

Antigen-activated B-cells, together with their associated T cells, move into a722

primary lymphoid follicle, where they proliferate and ultimately form a GC.723
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GCs are composed mainly of B-cells, but antigen specific T-cells, which have724

also been activated and migrated to the lymphoid follicle, make up about725

10% of GC lymphocytes and provide indispensable help to B-cells [60,68,54].726

Indeed, when B-cells start to proliferate in GC, they need to receive proper727

survival signals, or they die by apoptosis. The number of B-cells within a ger-728

minal center grows at high pace: it can double every 6-8 hours [31,19]. After729

about 3 days of strong proliferation, B-cells start undergoing SHM, in order to730

diversify the variable region of their BCRs, and those cells that express newly731

generated BCRs are selected for enhanced antigen binding. The fast prolifera-732

tion rate of B-cells is required for the generation of a large number of modified733

BCRs within a short frame time (one cell gives 104 blasts in 72 hours). Some734

B-cells positively selected in the light zone differentiate into memory B-cells735

or plasma cells. The GC reaches its maximal size within approximately two736

weeks, after which the structure slowly involutes and disappears within several737

weeks [75]. During the GC process B-cells are subjected to powerful selection738

mechanisms that facilitate the generation of high affinity antibodies: a B-cell739

that express a newly generated BCR needs to be tested for enhanced anti-740

gen binding. This process is mediated by FDCs and follicular helper T-cells.741

BCR stimulation through antigen binding coupled with co-stimulatory signals742

transmitted by GC T-cells, provides survival signals to the cell. By contrast,743

failure of the BCR to bind antigen and receive proper rescue signals causes cell744

death by apoptosis [19]. The final differentiation of a GC B-cell into a plasma745

cell or a long-lived memory B-cell is driven by the acquisition of a high-affinity746

BCR. For short-lived memory B-cells, the differentiation process seems to be747

stochastic, as throughout GC reaction B-cells are constantly selected to enter748

the memory pool [54,70].749

4.2 B-cell receptors and antigen-antibody binding750

Immunoglobulins (Ig) present at the antigen receptor are Y-shaped macro pro-751

teins composed of four polypeptide chains assembled by disulfide bonds: two752

identical heavy (H) chains and two identical light (L) chains. Each chain con-753

sists of two regions: a constant (C) region, which has an effector function, and a754

variable (V) region composed by the variable parts of the two chains together.755

During GC reaction the only one involved in SHMs is the V region, which also756

determines the antigen binding site ([54], Chapter 1). We call antigen binding757

site or paratope the specialized portion of the BCR V region used for identi-758

fying other molecules, while the regions on any molecule that paratopes can759

recognize are called epitopes. B-cells are able to bind ligands whose surfaces760

are ‘complementary’ to that of their antigen binding site, where complemen-761

tarity means that the amino-acids composing the paratope and the epitope762

are distributed in such a way to form bonds which hold the antigen to the763

B-cell. In this case these bonds are all non-covalent (as hydrogen bonds, elec-764

trostatic bonds, van der Waals forces and hydrophobic bonds), which are by765

their nature reversible. Multiple bonding between the antigen and the B-cell766
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ensures that the antigen is bound tightly to the B-cell. The interaction between767

paratope and epitope can be characterized in terms of a binding affinity, pro-768

portional to their complementarity. The affinity is the strength of the reaction769

between a single antigenic determinant and a single combining site on the B-770

cell: it summarizes the attractive and repulsive forces operating between the771

antigenic determinant and the combining site of the B-cell, and corresponds772

to the equilibrium constant that describes the antigen-B-cell reaction [1,78,46].773

774

Each antigen typically has several epitopes, so that the surface of an antigen775

presents variable motifs that B-cells, through their receptors, can discriminate776

as distinct epitopes. If we define an epitope by its spatial contact with a BCR777

during binding, the number of relevant amino-acids is approximately 15, and778

among these amino-acids only around 5 in each epitope strongly influence the779

binding. These strong sites may contribute about one-half of the total free en-780

ergy of the reaction, while the other amino-acids influence in binding constant781

by up to one order of magnitude or even have no detectable effect. Simulta-782

neously, a BCR contains a variety of possible binding sites and each antibody783

binding site defines a paratope: about 50 variable amino-acids make up the784

potential binding area of a BCR. In agreement with the above, only around785

15 among these 50 amino-acids physically contact a particular epitope: these786

define the structural paratope. Consequently, antibodies have a large num-787

ber of potential paratopes as the 50 or so variable amino-acids composing the788

binding region define many putative groups of 15 amino-acids [46].789

790

Substitutions both in and away from the binding site can change the spatial791

conformation of the binding region and affect the binding reaction. The con-792

sequence of mutation at a particular site depends on the original amino-acid793

and the amino-acid used for substitution ([1], Chapter 4).794

4.3 From DNA to amino-acids: choosing the best viewpoint795

Mutations observed on the binding site of B-cells during the GC process are796

the result of genetic mutations produced by SHM on the portion of DNA en-797

coding for the BCR V region. In the current section we discuss a model of798

genetic mutations and its effects on the amino-acid string, under the assump-799

tion of having two amino-acid classes. We show that the framework we set up800

in previous sections can adapt to model the effects of SHM over BCRs and801

study the variation of the affinity with the presented antigen.802

803

The genetic code is a sequence of four nucleotides, guanine (G), adenine804

(A) (called purines), thymine (T) and cytosine (C) (pyrimidines), joined to-805

gether. They make three-letter words: the codons. Each codon corresponds to806

a specific amino-acid or to a stop signal, which interrupts the building of the807

protein during translation. As the number of possible combinations of 4 nu-808

cleotides in 3-length words is 64, and there exists 20 amino-acids in naturally809
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derived proteins, more than a single codon codes for the same amino-acid [69].810

Table 5 shows the correspondence between codons and amino-acids.811

812

Table 5: The correlation between codons and amino-acids: most of the amino-
acids derives from more than a single codon.

T C A G

T

TTT Phe (F) TCT Ser (S) TAT Tyr (Y) TGT Cys (C) T

TTC Phe (F) TCC Ser (S) TAC Tyr (Y) TGC Cys (C) C

TTA Leu (L) TCA Ser (S) TAA Stop TGA Stop A

TTG Leu (L) TCG Ser (S) TAG Stop TGG Trp (W) G

C

CTT Leu (L) CCT Pro (P) CAT His (H) CGT Arg (R) T

CTC Leu (L) CCC Pro (P) CAC His (H) CGC Arg (R) C

CTA Leu (L) CCA Pro (P) CAA Gln (Q) CGA Arg (R) A

CTG Leu (L) CCG Pro (P) CAG Gln (Q) CGG Arg (R) G

A

ATT Ile (I) ACT Thr (T) AAT Asn (N) AGT Ser (S) T

ATC Ile (I) ACC Thr (T) AAC Asn (N) AGC Ser (S) C

ATA Ile (I) ACA Thr (T) AAA Lys (K) AGA Arg (R) A

ATG Met (M) ACG Thr (T) AAG Lys (K) AGG Arg (R) G

G

GTT Val (V) GCT Ala (A) GAT Asp (D) GGT Gly (G) T

GTC Val (V) GCC Ala (A) GAC Asp (D) GGC Gly (G) C

GTA Val (V) GCA Ala (A) GAA Glu (E) GGA Gly (G) A

GTG Val (V) GCG Ala (A) GAG Glu (E) GGG Gly (G) G

Different kind of genetic mutations can affect the DNA sequence of a gene.813

They can be regrouped in three main categories: base substitutions, inser-814

tions and deletions. A single base substitution is a switch of a nucleotide with815

another. This is the simplest kind of mutation and it can turn out to be mis-816

sense, nonsense or silent, once we observe the resulting new protein. We said817

that a mutation is missense if the result of the genetic mutation is a different818

amino-acid in the protein. The mutation is nonsense when the genetic muta-819

tion results in a stop codon instead of an amino-acid. Finally, a silent mutation820

is a mutation with no effect on the amino-acid string, i.e. the mutated sequence821

codes for an amino-acid with identical binding properties. We talk about inser-822

tion (resp. deletion) when one or more nucleotides are added (resp. removed)823

at some place in the DNA code. These last kinds of mutations can both be824

frameshift mutations, which are given by the insertion or deletion of a number825

of bases that is not a multiple of 3, altering the reading frame of the gene.826

SHM introduces mostly single nucleotide exchanges, together with small dele-827

tions and duplications, i.e. the insertion of extra copies of a portion of genetic828
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material already present within the DNA code [35,14,15]. Among these point829

mutations, transitions (i.e. substitution of a purine nucleotide with another830

purine one, or a pyrimidine with a pyrimidine) dominate over transversions831

(substitution of a purine with a pyrimidine or conversely). About half of the832

mutations (53%) have been estimated to be silent, about 28% nonsense, and833

only about 19% of all mutations have been estimated to be missense and then834

have an effect on affinity, which can either be of an improving nature, or of835

worsening and even lead to the formation of autoreactive clones [36].836

837

The 20 existing amino-acids are typically classified in charged amino-acids,838

polar (non-charged) amino-acids and hydrophobic amino-acids, depending on839

their chemical characteristics. As we have already discussed in Section 4.2 the840

bonding between BCR and antigen is made thanks to non-covalent bonds,841

in particular ionic bonds and hydrogen bonds. Ionic bonds are the result of842

interactions between two amino-acids oppositely charged: arginine (R) and843

lysine (K) are positively charged, while aspartic acid (D) and glutamic acid844

(E) are negatively charged. As long as hydrogen bonds are concerned, also845

polar amino-acids can participate. In particular arginine (R), lysine (K) and846

tryptophan (W) have hydrogen donor atoms in their side chains; aspartic acid847

(D) and glutamic acid (E) have hydrogen acceptor atoms in their side chain848

while asparagine (N), glutamine (Q), histidine (H), serine (S), threonine (T)849

and tyrosine (Y) have both hydrogen donor and acceptor atoms in their side850

chains.851

852

Stop codons also have an important role. Indeed, during translation (the853

last step necessary to build a protein starting from the DNA molecule) amino-854

acids continue to be added until a stop codon is reached. There exists two855

types of mutations involving stop codons, named nonsense and nonstop re-856

spectively. The first one corresponds to the substitution of an amino-acid with857

a stop codon, while the second one is the opposite case. In both cases the re-858

sulting protein has an abnormal length, which often causes a loss of function.859

Moreover, errors given by both nonsense and nonstop mutations are linked to860

over 10% of human genetic diseases [12].861

862

Concerning mutation in activated B-cells, SHM is driven by an enzyme863

called activation-induced cytidine deaminase (AID) which is expressed specif-864

ically in this case. This protein can bind to single-stranded DNA only. Thus865

it seems to target only genes being transcribed (for which the transcription866

phenomenon separates temporarily double stranded DNA into small portions867

of two single stranded DNA sequences) [40]. AID converts Cytosine (C) in868

Uracil (U) by deamination. This substitution occurs at higher rates in hot869

spots motives like DGYW/WRCH where (G : C is the mutable position and870

D ∈ {A,G,T}, H ∈ {A,C,T}, R∈ {A,G},W ∈ {A,T} and Y ∈ {C,T}, and the871

underlined letters are the loci of mutations) [62,35]. Then, two mechanisms872

tend to repair lesions in the DNA caused by these substitutions of C by U [63]:873
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a) either mismatch repair : substitution for the damaged zone by another874

sequence of nucleotides thanks to proteins MSH 2/6. The U base is read875

as T leading to a transition from a C :G pair to T :A.876

b) or base excision repair : U is excised by a successive action of uracil-877

DNA glycolase (UNG) and apurinic/apyrimidinic endonuclease (APE1).878

The DNA contains then a nick, after replication, a random nucleotide is879

inserted in order to fill the vacant space leading to transversions and tran-880

sitions.881

From a mathematical point of view this is equivalent to define the switch882

with a random nucleotide depending on the motives present in the chain. The883

probability concerning the choice of this nucleotide to be inserted shall not be884

uniform due to the presence of mismatch and excision repairs [20,63]. This is885

not taken into account in the model we developed.886

887

We can therefore make the following three main assumptions to model the888

SHM process acting on the BCR V region:889

Modeling assumption 1 SHM introduces only single point mutations in the890

DNA strand, missense or silent. Therefore we do not take into account nonsense891

mutations, in order to avoid an interruption of the mutation process due to892

the introduction of a stop codon. The choice of the base used for substitution893

is made randomly, without considering that we have mostly A↔ T and G↔C894

substitutions.895

Modeling assumption 2 We consider only electrostatic and hydrogen bonds as896

responsible for the bonding between BCR and antigen. We suppose we have897

two amino-acid classes represented as 0 and 1 respectively: we denote by 1898

those amino-acids which have hydrogen donor atoms in their side chains (or899

which are positively charged) and by 0 those amino-acids which have hydrogen900

acceptor atoms in their side chains (or which are negatively charged). We901

arbitrary chose to assign 0 or 1 to amino-acids which can act as an acid or a902

base in hydrogen bonds. As an exemple, as serine can form hydrogen bonds903

with arginine and threonine, one can assign 0 to serine and 1 to threonine904

(arginine is represented by 1 as it is positively charged). While translating the905

amino-acid chain into a binary chain, we omit all hydrophobic amino-acids,906

as they do not participate in electrostatic or hydrogen bonds. Their position907

corresponds to an empty case, which does not contribute to the affinity between908

B-cell and antigen. This is clearly an important simplification. We will further909

discuss this choice in Section 4.4.910

Modeling assumption 3 We consider a linear contact between two amino-acid911

strings, without taking into account the geometrical configuration of both the912

BCR and the antigen.913

The process starts from a DNA chain coding for a BCR, Xdna
0 ; from which914

we can obtain the corresponding amino-acid chain, Xaa
0 (Table 5) and, conse-915

quently, its binary expression, Xbin
0 .916
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Example 1917

918

– Xdna
0 = (GTT, GAG, CTA, GTG, GAA, AGT, GGA, GCC, GAA, GTA, AAA,919

AAG, CCA, GGT, AGT, AGT, GTT, AAA, GTC, AGT, TGT, AAA, GCA)920

921

– Xaa
0 = (V, Q, L, V, E, S, G, A, E, V, K, K, P, G, S, S, V, K, V, S, C, K, A)922

923

– Xbin
0 = (−,1,−,−,0,0,−,−,0,−,1,1,−,−,0,0,−,1,−,0,0,1,−)924

Notation 1 Given a vector X, we denote by |X| its length (counting also the925

empty cases, if there are some). Equivalently, given a set S, we denote by |S|926

its size927

We can formalize the translation of the nucleotides chain into the amino-928

acids chain as follows.929

930

Definition 15 Let N and A be two sets of letters with size respectively |N |=931

k1 and |A| = k2. Let l be an integer positive number so that kl1 ≥ k2. Then932

we define fk1,k2,l : N l →A, which associate at least an l-length sequence of933

letters belonging to N to a letter in A.934

In our specific case, following definition 15, N := {G, A, T, C} is the set935

of nucleotides, while A is the set containing all possible amino-acids, together936

with the stop signal. Therefore k1 = 4 and k2 = 21. Moreover we know that937

l = 3 and the function f4,21,3 is detailed in Table 5.938

Remark 17 We can easily observe that l = min
{
n ∈ N |k1

n ≥ k2
}
. Indeed,939

having 4 nucleotides available to build a DNA strand, we need to read them940

at least by 3-length blocks in order to be able to synthesize all 20 amino-acids.941

Moreover, choosing this value for the parameter l avoids to have too many942

sequences of nucleotides coding for the same amino-acid.943

At the beginning of the process, the antigen string in its three representa-944

tions is given as well: xdna, xaa and xbin, with |Xdna| = |xdna| =: 3N . Anti-945

gen representing strings remain unchanged. Assumptions 1-3 imply that for all946

t≥ 0, |Xbin
t |= |xbin|=N . At each time step a single point mutation (missense947

or silent) is introduced in the DNA chain coding for the BCR. So, if Xdna
t948

is the DNA code at time t, we randomly choose an index i ∈ {1, . . . ,3N}, a949

letter a ∈ N and we place (Xdna
t+1 )i := a. If the new codon is a stop codon,950

then we choose a′ ∈ N \{a} and we put (Xdna
t+1 )i := a′, and so on.951

In order to test the affinity, we consider the binary expression of both the952

BCR and the antigen, which we take in its complementary form, i.e. x′bin :=953

(1−xbin1 , . . . ,1−xbinN ). This leads us back to the definition of affinity we made954

in Section 2: 0 matches with 0 and 1 with 1.955

956
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As we consider a linear contact between Xbin
t and x′bin, at the positions957

where either Xbin
t or x′bin has an hydrophobic amino-acid, we suppose that958

no match is possible. Therefore we can extend Definition 4 of the Hamming959

distance in a very natural way to this more general case:960

Definition 16 We denote by Hy(Xbin
t ) (resp. Hy(x′bin)) the set of the in-

dices corresponding to hydrophobic amino-acids in Xbin
t (resp. in x′bin). There-

fore the Hamming distance between Xbin
t and x′bin is given by:

h(Xbin
t ,x′bin) =

∑
i∈{1,...,N}

i/∈Hy(Xbin
t )∪Hy(x′bin)

δi+ |Hy(Xbin
t )∪Hy(x′bin)|

where δi =

1 if (Xbin
t )i 6= (x′bin)i

0 otherwise

Then, for all t≥ 0:

|Hy(Xbin
t )∪Hy(x′bin)| ≤ h

(
Xbin
t ,x′bin

)
≤N

We consider that the optimal clone is reached when:

aff
(

Xbin
t ,x′bin

)
:=N −|Hy(x′bin)|

The effects of nucleotides exchanges on the binary expression of BCRs can961

be multiple:962

No detectable effect : this is the result of either a silent mutation or a mis-963

sense mutation which substitutes an amino-acid with another one belonging964

to the same amino-acid class.965

Class-switch , derived from a missense mutation which leads to the substitu-966

tion of an amino-acid with another one belonging to the other amino-acid967

class.968

We can further complexify this model by replacing Assumption 1 with the969

following one:970

Modeling assumption 4 SHM introduces mostly single point mutations in the971

DNA, missense or silent. With weak probability, deletions or insertions can972

occur. For the sake of simplicity, we suppose that a deletion (resp. an insertion)973

consist in the elimination (resp. the addition) of a non-stop codon. Moreover, in974

order to avoid the problem of a variation in the length of the BCR representing975

string, when a deletion occur, those bits situated on the right of the deleted976

one shift to the left, and a random extra codon is added at the right bottom.977

Conversely, if an insertion occurs, the right bottom bit is deleted.978
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Even if these mutational events are rare, they have remarkable effects over979

the structure of the underlying graph. Indeed a deletion or an insertion entails980

a great jump in the affinity function by producing a shift of a portion of the981

BCR representing string. This is not the case if we consider only single point982

mutations. Therefore, under Assumption 4 the graph we obtain is much more983

complex and allows random long range connections.984

4.3.1 Numerical simulations985

In order to evaluate how deletions and insertions affect the mean number of986

mutation steps to reach the desired B-cell trait, we make some numerical simu-987

lations. We compare a model in which only single point mutations are allowed988

to another one in which also deletions and insertions can occur. We refer to989

Assumption 4 to define these mutational events.990

991
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Figure 4: Variation of the Hamming distance to x′bin, comparing the model of
single point mutations to the one which includes also deletions and insertions
(50% of all mutation events). In both cases N = 10. Deletions and insertions
lead to a quick change in the Hamming distance. Between time 30 and 50, we
can observe the effect of indels mutations.

Figure 4 shows the effects of deletions and insertions over the affinity. In992

order to do these simulations, we arbitrary fixe a BCR and an antigen with993

given affinity. We do not consider those base substitutions leading to no de-994

tectable effect, i.e. at each time step we can observe a variation of the affinity995

function. In Figure 4 we can clearly locate at what time an insertion or a996

deletion has occurred, because this coincides with a jump of the Hamming997

distance between BCR and antigen.998

999

One can ask how these random long range connections affect the average1000

time to reach the antigen target string. Simulations show that one needs a1001

more long time to reach x′bin if the probability of making such mutations in-1002

creases. The results obtained through 10000 simulations are collected in Table1003
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6.1004

1005

Table 6: Average number of mutations needed to reach x′bin, for N = 10 and
starting from Hamming distance 7. In x′bin, only 2 amino-acids are hydropho-
bic, so by Definition 16, the optimal affinity one can reach is 8. We compare
three models: in the first one no deletions nor insertions are allowed. In the
second model 10% of all mutations are deletions or insertions, 50% in the last
one. We denote by ̂τ{x′bin}n

the average value obtained over n simulations and
by σ̂n its corresponding estimated standard deviation. Simulations show that
̂τ{x′bin}n

increases when the pourcentage of deletions or insertions grows, and
so does the corresponding variation.

% deletions/insertions |x′bin| h(Xbin
0 ,x′bin) n ̂τ{x′bin}n

σ̂n√
n

0 10 7 10000 8824.93 86.80

10 10 7 10000 9091.12 92.01

50 10 7 10000 10075.89 100.59

We can discuss which viewpoint is the most suitable to study mutations1006

and their effects over the interactions between BCR and antigen. It is really1007

hard to define a clear correspondence between genetic mutations and the evo-1008

lution of the affinity, even while considering a simple linear contact between1009

molecules (hence without observing the changes in the geometrical structure1010

of the protein). Indeed, in order to test the affinity between BCR and anti-1011

gen we constantly need to project the DNA string on the smaller state-space1012

containing the binary representations of B-cell traits. If we directly consider1013

mutations on binary strings, then the resulting process is faster, as we do not1014

observe missense mutations, and the evaluation of the affinity is immediate.1015

1016

The comprehension of the nature of genetic mutations and their conse-1017

quences on the new generated protein, suggested us to make Assumptions 1-31018

to formalize the model. In particular, we found reasonable to look directly1019

to amino-acid chains and their binary representation: this allows to study the1020

affinity between BCR and antigen using the Hamming distance. Therefore, un-1021

der these hypotheses the general mathematical framework described in Section1022

2 can be applied to study how different kinds of missense mutations affect the1023

dynamics of AAM. As we show in Sections 2-3, this already brings interesting1024

and complexes mathematical problems.1025
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4.4 Limitations and extensions1026

In this paper we propose and study mutational processes on N -length binary1027

strings, which can be variously applied to evolutionary contexts. As far as1028

the application to the SHM process is concerned, we can make some remarks1029

about our assumptions, which can bring us to enrich and complexify the model1030

through a more coherent representation of the true biological process.1031

1032

First of all we have decided to consider only two amino-acid classes. From1033

one side this assumption is justified as charged and polar amino-acids are ef-1034

fectively the most responsible in creating bonds which determine the antigen-1035

antibody interaction. Therefore they strongly influence the affinity between1036

BCR and antigen. Nevertheless, by making this simplification we omit all1037

hydrophobic amino-acids from the string, and that is not without conse-1038

quences. The elimination of hydrophobic amino-acids from the string signif-1039

icantly changes the structure of the chain, therefore the ability for charged1040

and polar amino-acids to be in contact with each-others. Moreover, the effects1041

of genetic mutations on the new generated protein could be even more com-1042

plex than the ones we have considered in this paper. Finally, by taking into1043

account also hydrophobic amino-acids, we would be able to consider hydropho-1044

bic bonds, which also influences the antigen-antibody interaction. Therefore it1045

seems more appropriate to consider three, or more, amino-acids classes (e.g.1046

[59,53]).1047

1048

As far as the nature of mutations is concerned, we have essentially de-1049

scribed mutational processes given by combinations of single point mutation1050

mechanisms. During SHM nucleotide exchanges are the most frequent among1051

all possible mutations. Despite this, also some deletions and insertions occur.1052

This has two main consequences. Firstly it means that the length of the BCR1053

representing string could change during the process, while we consider it as1054

fixed and equal to the length of the antigen. We can maybe overcome this1055

problem by saying that the chain represented in our model corresponds to the1056

portion of BCR in contact with the antigen, and this is almost fixed (Section1057

4.2). Moreover these mutations can imply substantial changes into the amino-1058

acid chain, hence they can bring a great jump of the affinity to the presented1059

antigen. Therefore, even if these are rare mutational events, they may have1060

an important effect in AAM. Consequently it could be interesting to take also1061

insertions and deletions into account. All these observations lead interesting1062

mathematical questions.1063

1064

Of course we can also envisage developments in other directions. For exam-1065

ple by considering the creation of bonds among amino-acids of the BCR (resp.1066

the antigen) itself, which determines the geometrical structure of the protein1067

and consequently the portion of the BCR and the antigen that can actually be1068

in contact. Another interesting possibility is to consider that mutations at one1069

site are influenced by other amino acids composing the string. This assumption1070
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was firstly proposed by S. A. Kauffman and E. D. Weinberger in [39], where1071

they introduced the NK models. In this context the parameter K assures the1072

richness of epistatic interactions among sites. More recently Y. Elhanati et al1073

in [23] find biological evidence for an evolutionary model where substitution1074

rates strictly depend on the context.1075

1076

We propose some numerical simulations to evaluate the consequences over1077

the hitting time of both the addiction of extra amino-acid classes and the pos-1078

sibility of having a BCR string longer than the antigen one.1079

1080

A. S. Perelson and G. Weisbuch in [59] proposed a model with 3 amino-1081

acid classes: hydrophobic, hydrophilic positively charged and hydrophilic ne-1082

gatively charged. Hydrophobic amino-acids match with hydrophobic and hy-1083

drophilic positively charged with hydrophilic negatively charged. We simulated1084

the expected time to reach a given configuration comparing the model with1085

2 amino-acid classes and the one with 3 amino-acid classes, and considering1086

single switch-type mutations. We take two random 10-length strings having1087

maximal distance between each-others. We extend Definition 4 of Hamming1088

distance to the state-space {0,1,2}N in a natural way, keeping the same nota-1089

tion: ∀ x = (x1, . . . ,xN ), y = (y1, . . . ,yN ) ∈ {0,1,2}N , their Hamming distance1090

is given by:1091

h(x,y) =
N∑
i=1

δi where δi =

1 if xi 6= yi

0 otherwise
(31)

Therefore the affinity is defined as in Definition 3. We simulated for both cases1092

a single switch-type mutational model (Definition 5 for 2 amino-acid classes1093

and Definition 17 below for 3 amino-acid classes), testing the time we need to1094

reach the target vertex.1095

Definition 17 Let Xn ∈ {0,1,2}N be the BCR at step n. Let i ∈ {1, . . . ,N}1096

be a randomly chosen index, and a ∈ {0,1,2} \ {Xn,i} a randomly chosen1097

number. Then Xn+1 := (Xn,1, . . . ,Xn,i−1,a,Xn,i+1, . . . ,Xn,N ).1098

Table 7 shows the results we obtained over 10000 simulations.1099

We already knew from theoretical analysis that the order of magnitude1100

for the hitting time of the basic mutational model is 2N for N big enough.1101

Simulations clearly show that when we consider 3 amino-acid classes, the or-1102

der of magnitude of the hitting time of a single switch-type mutational model1103

significantly increases, and is of the order of 3N , as proved by Proposition 4.1104

Moreover we observe that the variance corresponding to the second model is1105

significantly bigger as well.1106

1107

It is clear that if we consider more amino-acid classes, it takes much longer1108

to reach a precise element of the new state-space. Nevertheless, one can under-1109

stand that if we keep the same distance function as defined in Equation (31),1110
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Table 7: Average expected times to cover a Hamming distance h(X0,x) =
10 = N , comparing the model with 2 amino-acid classes and the one with 3
amino-acid classes. Here we denote by τ̂{x}n the average value obtained over
n simulations and by σ̂n its corresponding estimated standard deviation.

Amino-acid classes N h(X0,x) n τ̂{x}n
σ̂n√
n

2 10 10 10000 1213.2108 12.0138

3 10 10 10000 62160.8263 635.0458

than we are asking for a higher degree of precision while building the B-cell1111

trait. Therefore, we can not directly compare hitting times corresponding to1112

a model with a greater number of amino-acid classes and keeping the same1113

affinity function as the one used with only two amino-acid classes. If one want1114

to obtain a comparable result by using more than two amino-acid classes, one1115

has to use a weaker definition of affinity.1116

Definition 18 Let S be a set of letters, |S| = s > 2. Let us partition S into
two subsets: S := S1tS2. ∀ x, y ∈ SN , their distance is given by:

hS1,S2(x,y) =
N∑
i=1

δi where δi =

1 if xi ∈ S1, yi ∈ S2 or conversely

0 otherwise

Consequently, their affinity is given by:

aff(x,y) =N −hS1,S2(x,y)

By using this new affinity function we can compare the hitting times and1117

the order of magnitude is clearly the same.1118

1119

Let us now go back to Assumption 2 and to the structure of the string1120

given in Section 4.3 (in particular, hydrophobic amino-acids are represented1121

by empty cases). Contrary to what stated by Assumption 4, we suppose that1122

the BCR length can be modified by insertions and deletions. Consequently, also1123

a modification of the distance function is needed. We arbitrarily fixe a BCR1124

and an antigen with given affinity. We do not consider those base substitutions1125

leading to no detectable effect, i.e. at each time step we can observe a variation1126

of the affinity function. We suppose that 90% of all mutation events are single1127

point mutations, 10% deletions or insertions. If we are in this case and |Xbin
t |>1128

|x′bin|, then with probability 1/2 a deletion occurs and with probability 1/2 an1129

insertion occur. Otherwise, it will be necessarily an insertion (this is to avoid1130

to obtain |Xbin
t | = 0). As long as the affinity is concerned, if |Xbin

t | > |x′
bin|,1131
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|Xbin
t | := n1, |x′bin| := n2, then their distance is the smaller possible one, i.e.:1132

h(Xbin
t ,x′bin) = min

1≤i≤n1−n2+1

{
h(Xi,x′

bin) |Xi :=
(
Xbin
t,i ,X

bin
t,i+1, . . . ,X

bin
t,i+n2−1

)}
,

h as in Definition 16.

Table 8: Average number of mutations needed to reach x′bin, for N = 7 and
starting from a Hamming distance 5. In x′bin, only 2 amino-acids are hy-
drophobic, so by Definition 16, the optimal Hamming distance one can reach
is 2. We compare a model in which no deletions nor insertions are allowed
and a model in which 10% of all mutations are deletions or insertions. We
denote by ̂τ{x′bin}n

the average value obtained over n simulations and by σ̂n
its corresponding estimated standard deviation.

% deletions/insertions |x′bin| h(Xbin
0 ,x′bin) n ̂τ{x′bin}n

σ̂n√
n

0 7 5 5000 374.28 5.38

10 7 5 5000 251.48 3.54

In this case, and thanks to the definition of Hamming distance as the min-1133

imal one, we clearly have more chances to obtain a good B-cell trait. This is1134

confirmed by results collected in Table 8. When deletions and insertions can1135

occur, even with very weak probability, and if we allowed the BCR length1136

to be greater than the antigen one, then the expected number of mutations1137

needed to built the optimal BCR is more than 30% smaller.1138

1139

5 Conclusion1140

In this paper, we have introduced a mathematical framework to study the1141

impact of various mutation rules on the exploration of the space of traits in an1142

evolutionary model. In particular, we have connected mutation rules to char-1143

acteristic time-scales, such as hitting-times, through the study of associated1144

graph structures. As a leading example, which was the original motivation for1145

this study, we have considered applications of these results to the modeling of1146

somatic hypermutations in the germinal center. The models considered so far1147

do not include division and selection, which would lead to studying branching1148

random walks on graphs, a topic of ongoing research.1149
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