A mathematical model for Somatic Hypermutation

Irene Balelli (LAGA - University Paris 13)
balelli@math.univ-paris13.fr

Biological background

In the adaptive immune system, immunity is conferred by antigen-specific antibodies. Their production is assured by B-cells, that undertake an evolutionary mutation-selection process in order to improve their ability to recognize a particular antigen. Somatic hypermutation is the basis for the affinity maturation of B-cells. It involves a programmed process of mutation affecting B-cells receptors (BCR).

Modeling SHM

We suppose we are allowed to classify the amino acids which determine the chemical properties of both BCR and antigen into two classes. We represent BCR and antigen as two binary strings with the same fixed length N and we estimate the affinity in terms of the hamming distance. To define a mutation rule means to define a random walk on the hypercube.

The Basic Model

Mutation rule: class switch of a randomly chosen amino acid.
$\left(X_{n}\right)_{n \in \mathcal{H}_{N}}$ is a simple random walk on the hypercube
$\mathbb{P}\left(X_{n}=x_{j} \mid X_{n-1}=x_{i}\right)=\left\{\begin{array}{lll}\frac{1}{N} & \text { if } x_{j} \sim x_{i} \\ 0 & \text { otherwise }\end{array} \rightarrow \mathcal{P}\right.$ Stationary distribution: $\mu(x)=2^{-N}, \forall x \in \mathcal{H}_{N}$ Convergence $\mathcal{P} \xrightarrow{\mathcal{L}} \mu$: if we add N loops at each vertex to break the periodicity. Indeed, \mathcal{H}_{N} is bipartite. Eigenvalues: $-1, \frac{-N+2}{N}, \frac{-N+4}{N}, \ldots, \frac{N-4}{N}, \frac{N-2}{N}, 1$

The distances process

$\left(D_{n}\right)=H\left(X_{n}, \overline{\mathbf{x}}\right)$ where H is the Hamming distance $\left(D_{n}\right)$ is a random walk on $\{0, \ldots, N\}$
$\mathbb{P}\left(D_{n}=d^{\prime} \mid D_{n-1}=d\right)= \begin{cases}\frac{d}{N} & d^{\prime}=d-1 \\ \frac{N-d}{N} & d^{\prime}=d+1 \quad \rightarrow \mathcal{Q}, \\ 0 & \left|d^{\prime}-d\right| \neq 1\end{cases}$ Stationary distribution: B $\left(N, \frac{1}{2}\right)=\left(\binom{N}{d} \frac{1}{2^{N}}\right)$ Convergence $\mathcal{Q} \xrightarrow{\mathcal{L}} \mathbf{B}\left(N, \frac{1}{2}\right):$ iff we add loops. Eigenvalues: the same as \mathcal{P}, with multiplicity 1

$N \rightarrow \infty$

$x_{N}(t):=\frac{D_{\lfloor N t\rfloor}}{N} \rightarrow x(t)=\frac{1}{2}+\left(x_{0}-\frac{1}{2}\right) \frac{1}{e^{2 t}}$ $\left.\left.\lim _{N \rightarrow \infty} \frac{H(\alpha N)}{2^{N}}=1, \forall \alpha \in\right] 0,1\right]$ Fluctuations: $1 /(2 N)$

References

Chinmoy Dutta, Gopal Pandurangan, Rajmohan Rajaraman \&
Scott Roche. Coalescing-branching random walk on graphs, 2013 . Scott Roche. Coalescing-branching random walk on graphs, 2013 .
Lásslós Lovasz. Random walks on graphs: a survey. CombinaLasszló Lovasz. Random walks on graphs:
torics, Paul erdos is eighty, $2(1): 1-146,1993$

The hitting time

Definition: $H(i, j)=$ average number of steps needed to reach j, starting from i $H(\bar{d})=$ average number of steps to reach $\overline{\mathbf{x}}$, with $H\left(X_{0}, \overline{\mathbf{x}}\right)=\bar{d}$. Biological interpretation: the hitting time represents the expected number of mutations we need to obtain an optimal BCR, given a particular antigen. Computation (Basic model): $H(i, j)=2^{N} \sum_{k=2}^{2^{N}} \frac{1}{1-\lambda_{k}}\left(v_{k j}^{2}-v_{k i} v_{k j}\right)$

$$
H(\bar{d})=\sum_{d=0}^{\bar{d}-1} \frac{\sum_{j=1}^{N-1-d}\binom{N}{d+j}+1}{\binom{N-1}{d}}
$$

Switch 1-2, a new mutation rule: we're allowed to switch the class of 1 or 2 length strings, depending on the Hamming distance. The hitting time corresponding to this case is reduced by a factor 2 , compared to the basic model.

2-Branching random walk on the N-dimensional hypercube

Biological motivation: we want to couple the mutational process with the cellular proliferation
We give two different definitions of the 2-Branching random walk on \mathcal{H}_{N} :
Simple: the process starts at an arbitrary node, labelled as active. Then if at time t a node is active, it chooses two of its neighbors, independently and with replacement, to become active at time $t+1$ and he becomes inactive. In this case we are not interested in how many times a node is chosen to become active.
With multiplicity: the process starts with a clone lying on a random node of the hypercube, which represents its configuration. At each time step each clone divides and moves, independently from all the others, in a neighbor vertex. As an immediate consequence, at time t we will have exactly 2^{t} clones lying on \mathcal{H}_{N}

Branching random walk and bipartiteness

000 Notation: $S_{t}=\{$ active nodes at time $t\} ; N\left(S_{t}\right)=\left\{\right.$ neighbors of $\left.S_{t}\right\}$
 Proposition: Let $G_{b}\left(V_{1} \sqcup V_{2}, E\right)$ be a bipartite graph. If the initial distribution \mathbf{p} is concentrated on V_{1} or on V_{2}, then: $\left|S_{t}\right| \leq \max _{i=1,2}\left(\left|V_{i}\right|\right)$ for all $t \geq 0$
100 Theorem: Given a k-branching random walk on a finite non-bipartite connected graph $G=(V, E)$, independently from \mathbf{p} we have that: $\mathbb{P}\left[\exists t>0, t<\infty\right.$ s.t. $\left.S_{t}=V\right]>0$

Partial cover time for the Simple BRW

Preliminary result: For any $N \geq 1, \mathcal{H}_{N}$ is a N-regular $\left(r, 2^{-r}\right)$-expander graph, i.e.:

$$
\forall r \in\{1, \ldots, N\}, \forall S \subset\{0,1\}^{N} \text { s.t. }|S| \leq 2^{N-r} \Rightarrow|N(S)| \geq r|S|
$$

Theorem [1]: Given a simple 2-branching random walk on \mathcal{H}_{N}, there exists a time T such that:

$$
T=\mathcal{O}(N) \text { and }\left|S_{T}\right| \geq 2^{N-r}, \text { for } r>\frac{N^{2} e^{-2}+N-2}{N e^{-2}+N-2}
$$

BRW with multiplicity

$X_{t}^{i}=$ number of particles lying on vertex i at time t. Then we have the following result:

$$
\mathbb{P}\left[X_{t}^{i}=s \mid X_{t-1}^{j} \forall j \sim i\right]=\left\{\begin{array}{ll}
\binom{2 n_{t-1}^{i}}{s} \frac{(N-1)^{2 n_{t-1}^{i}-s}}{N^{2 n_{t-1}^{i}}} & \text { if } s \leq 2 n_{t-1}^{i} \\
0 & \text { otherwise }
\end{array} \quad \text {, where } n_{t-1}^{i}:=\sum_{j \sim i} X_{t-1}^{j}\right.
$$

$\underline{k \text {-BRW on the complete graph on } N \text { vertices } \mathcal{K}_{N} \text { : }}$

$$
\mathbb{P}\left[X_{t}^{i}=s \mid X_{t-1}^{i}=s^{\prime}\right]= \begin{cases}\binom{2^{t}-k s^{\prime}}{s}\left(\frac{1}{N-1}\right)^{s}\left(1-\frac{1}{N-1}\right)^{2^{t}-k s^{\prime}-s} & \text { if } s \leq 2^{t}-k s^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

Comparing the distances processes: basic model and BRW

Definition: Let $\overline{\mathbf{x}}$ be a fixed node in \mathcal{H}_{N} Let $\mathbf{X}_{t}:=\left(x_{1}^{t}, \ldots, x_{2^{t}}^{t}\right) \in\left(\mathcal{H}_{N}\right)^{2^{t}}$ be the 2 -branching process We define the distance \mathcal{D}_{t} of \mathbf{X}_{t} to $\overline{\mathbf{x}}$ as:

$$
\mathcal{D}_{t}=\min _{x_{i}^{t} \in \mathbf{X}_{t}}\left(H\left(\overline{\mathbf{x}}, x_{i}^{t}\right)\right)
$$

where $H\left(\overline{\mathbf{x}}, x_{i}^{t}\right)$ is the Hamming distance between $\overline{\mathbf{x}}$ and x_{i}^{t}

