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Biological background
In the adaptive immune system, immunity
is conferred by antigen-specific antibodies.
Their production is assured by B-cells, that
undertake an evolutionary mutation-selection
process in order to improve their ability to rec-
ognize a particular antigen. Somatic hyper-
mutation is the basis for the affinity matura-
tion of B-cells. It involves a programmed process
of mutation affecting B-cells receptors (BCR).

Modeling SHM
We suppose we are allowed
to classify the amino acids
which determine the chemical
properties of both BCR and
antigen into two classes.

We represent BCR and antigen as two binary
strings with the same fixed length N and we
estimate the affinity in terms of the hamming
distance. To define a mutation rule means to
define a random walk on the hypercube.

The Basic Model
Mutation rule: class switch of a randomly cho-
sen amino acid.

(Xn)n∈HN
is a simple random walk on the hypercube

P(Xn = xj |Xn−1 = xi) =


1

N
if xj ∼ xi

0 otherwise

→ P

Stationary distribution: µ(x) = 2−N , ∀x ∈ HN
Convergence P L→ µ: if we add N loops at each
vertex to break the periodicity. Indeed, HN is bipartite.
Eigenvalues: −1, −N+2
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The distances process
(Dn) = H(Xn,x) where H is the Hamming distance.
(Dn) is a random walk on {0, . . . , N}.

P(Dn = d′ |Dn−1 = d) =



d
N

d′ = d− 1
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N
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→ Q

Stationary distribution: B
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Convergence Q L→ B

(
N, 12

)
: iff we add loops.

Eigenvalues: the same as P, with multiplicity 1.

N →∞
xN (t) :=

DbNtc
N

→ x(t) = 1
2
+
(
x0 − 1

2

)
1
e2t

limN→∞
H(αN)

2N
= 1, ∀α ∈ ]0, 1]

Fluctuations: 1/(2N)
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The hitting time
Definition: H(i, j) = average number of steps needed to reach j, starting from i.

H(d) = average number of steps to reach x, with H(X0,x) = d.
Biological interpretation: the hitting time represents the expected number
of mutations we need to obtain an optimal BCR, given a particular antigen.
Computation (Basic model): H(i, j) = 2N

∑2N
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(v2kj − vkivkj)
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Switch 1-2, a new mutation rule: we’re allowed to switch the class
of 1 or 2 length strings, depending on the Hamming distance. The hitting time
corresponding to this case is reduced by a factor 2, compared to the basic model.

2-Branching random walk on the N-dimensional hypercube
Biological motivation: we want to couple the mutational process with the cellular proliferation.

We give two different definitions of the 2-Branching random walk on HN :

Simple: the process starts at an arbitrary node, labelled as active. Then if at time t a node is active, it chooses two
of its neighbors, independently and with replacement, to become active at time t+ 1 and he becomes inactive.
In this case we are not interested in how many times a node is chosen to become active.

With multiplicity: the process starts with a clone lying on a random node of the hypercube, which represents its
configuration. At each time step each clone divides and moves, independently from all the others, in a neighbor
vertex. As an immediate consequence, at time t we will have exactly 2t clones lying on HN .

Branching random walk and bipartiteness
Notation: St = {active nodes at time t}; N(St) = {neighbors of St}
Proposition: Let Gb(V1 t V2, E) be a bipartite graph. If the initial distribution p is
concentrated on V1 or on V2, then: |St| ≤ maxi=1,2 (|Vi|) for all t ≥ 0
Theorem: Given a k-branching random walk on a finite non-bipartite connected graph
G = (V,E), independently from p we have that: P[∃ t > 0, t <∞ s.t. St = V ] > 0

Partial cover time for the Simple BRW
Preliminary result: For any N ≥ 1, HN is a N -regular (r, 2−r)-expander graph, i.e.:

∀ r ∈ {1, . . . , N}, ∀S ⊂ {0, 1}N s.t. |S| ≤ 2N−r ⇒ |N(S)| ≥ r|S|

Theorem [1]: Given a simple 2-branching random walk on HN , there exists a time T such that:

T = O(N) and |ST | ≥ 2N−r, for r >
N2e−2 +N − 2

Ne−2 +N − 2

BRW with multiplicity
Xi
t = number of particles lying on vertex i at time t. Then we have the following result:

P[Xi
t = s |Xj

t−1 ∀ j ∼ i] =


(2nit−1

s

) (N − 1)2n
i
t−1−s

N
2ni

t−1

if s ≤ 2nit−1

0 otherwise

, where nit−1 :=
∑
j∼i

Xj
t−1

k-BRW on the complete graph on N vertices KN :

P[Xi
t = s |Xi

t−1 = s′] =


(2t − ks′

s

)( 1
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)s (
1−

1
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)2t−ks′−s
if s ≤ 2t − ks′

0 otherwise

Comparing the distances processes: basic model and BRW

Definition: Let x be a fixed node in HN .
Let Xt := (xt1, . . . , x

t
2t
) ∈ (HN )2

t
be the 2-branching process.

We define the distance Dt of Xt to x as:

Dt = min
xt
i∈Xt

(H(x, xti))

where H(x, xti) is the Hamming distance between x and xti.


