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Abstract
Antibody Affinity Maturation is a key process in adaptive immunity. During an Immune Response, activated

B-cells give rise to Germinal Centers in follicles, special micro-environnements where they proliferate, mutate
and differentiate. Moreover, they are submitted to powerful selection mechanisms to produce high affinity an-
tibodies against the presented antigen. The purpose of the study is to build and analyse a mathematical model of
the mutation-division-selection process of B-cells, aiming to understand how the different biological parameters
affect the system’s functionality. We are particularly interested in estimating via probabilistic methods typical
time-scales to reach a specific configuration (or a set) of the traits of B-cells, as a function of the introduced muta-
tional rule, as well as in quantifying GCs’ efficiency.

Modeling assumptions and objectives
Hypotheses:

• Two amino acid classes: 0 or 1.

• B-cells and antigen’s traits: N -length binary strings. HN := {0, 1}N is the state-space.

•Mutation: define the transition probability matrix overHN .

•Affinity: N− Hamming distance between B-cell and antigen.

Objectives:
• Evaluating the typical time-scales of the exploration ofHN .

• Identify and study the parameters which mostly influence the system functionality.

1 Pure mutational models
Simple point mutations: Class switch of a randomly chosen amino acid. The resulting RW is a

Simple Random Walk on the N -dimensional hypercube.
We denote by P the corresponding transition probability matrix.

Multiple point mutations: i independent simple point mutations with probability 1/k,
for all 1 ≤ i ≤ k, k being fixed between 1 and N .
We denote by P(k) the corresponding transition probability matrix: P(k) = 1

k

∑k
i=1Pi

1.1 Comparaison of hitting times
Let d be the initial Hamming distance between B-cell and antigen. We determined explicit formu-
las to estimate the hitting time to cover this distance, as a function of the mutational rule.

Mutational model Hitting time

Simple point mutations H(d) =
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d=0
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Multiple point mutations T
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Table 1: Estimation of hitting times

2 Mutation and division
At t = 0 a randomly chosen node is labelled as active. At each step t, each active node chooses two
of its neighbors, independently and with replacement, to become active at time t + 1. We are not in-
terested here in counting how many times a node is chosen to become active. We obtain a Branching
Random Walk with coalescence onHN .

2.1 Portion ofHN covered in O(N)

Let St be the active node set at time t. We estimate the size of ST , |ST |, for T = O(N), and depending
on the allowed mutational rule.

Model |ST | in T = O(N)

BRW-P |ST | ≥ 2N−r, r >
N2e−2 +N − 2

Ne−2 +N − 2

BRW-P(k) |ST | ≥ δ2N , δ ≤ 1/2

Table 2: Portion ofHN covered in T = O(N)

3 Mutation, division and selection with multiplicity

Figure 1: Schematic representation of the process. rd = death rate; rdiv = division rate; rs = selection rate.

3.1 Extinction probability in the GC
We denote by ηz0 the extinction probability of the GC population, starting from z0 naive B-cells.

Theorem:

• if rs ≥ 1− 1

(1− rd)(1 + rdiv)
, then ηz0 = 1

• otherwise ηz0 = ηz0 < 1 where η < 1 is the smaller fixed point of
F (s) := p0 + p1s + p2s

2, with:

– p0 := rd + rs(1− rd)(1− rdiv + rdivrs)

– p1 := (1− rd)(1− rs)(1− rdiv + 2rdivrs)

– p2 := rdiv(1− rd)(1− rs)2

3.2 rs maximizing the expectation of selected B-cells at time t

Numerical simulations evidence the existence of an optimal rs which maximizes the expected number
of selected B-cells at a given time t.

Theorem:
For any time t ∈ N∗, the optimal value of rs wrt the expectation of selected B-cells
is: rs(t) = 1/t.

4 Numerical Simulations

Hitting times to cover a fixed Hamming distance, referring to P(k) (Section 1)

Figure 2: Dependence of T
(k)
N (d) on d (left) and k (right).

Evolution of the active set size for the BRW-P and BRW-P(k) (Section 2)

Figure 3: Left: Evolution of the active set size comparing the BRW-P (blue) and the BRW-P (7) (green) for N = 10.
Right: Average size of |St| after t = N − 1, N,N + 1 time steps, comparing the 2-BRW-P (k) with k ∈ {1, . . . , N}.

Evolution of the selected pool and optimal rs (Section 3)

Figure 4: Dependence on rs of the expected number of selected B-cells after 15 time steps for N = 10. Left: Model with
positive-negative selection. Right: Model with only positive selection.
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